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ABSTRACT
Unequal access to AI augmentationmay disrupt human cooperation.
In this study, we address the impact of asymmetric AI assistance on
decision-making in cooperative economic games, focusing on how
AI augmentation influences trust, cooperation, and perceptions
of fairness in scenarios involving augmented and non-augmented
players. Using the Trust Game and the Prisoner’s Dilemma, we con-
ducted experiments in which participants interacted under varying
conditions of AI access. We found that while AI augmentation did
not significantly alter overall cooperation rates, it shaped social per-
ceptions: non-augmented players viewed augmented counterparts
as more competitive and less warm, predicting less cooperation
in the Trust Game. These disparities in perception highlight the
potential of AI augmentation to subtly influence human coopera-
tion. On a larger scale, the findings emphasize the importance of
designing equitable AI system access to prevent social divides and
promote cooperation in AI-augmented societies.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
tion (HCI).
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Human-Computer Interaction, Human Augmentation, Game The-
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1 INTRODUCTION
Artificial Intelligence (AI) is transforming society by reshaping how
people work, learn, and interact with the world and other individu-
als [8], particularly through Large Language Models (LLMs) that
enhance human capabilities through applications such as content
generation, decision support, or language translation [13, 19, 39].

AI adoption has produced positive effects in sectors like educa-
tion, where AI supports personalised learning [33, 66, 81], health-
care, by improving clinician and patient experiences [1, 60], and
transportation with AI-powered self-driving vehicles [38]. These
advancements streamline tasks, improve accessibility, and alter
decision-making, driving social change.

Yet, AI also presents challenges to the social fabric, ultimately
impacting how relationships within society evolve. For example, AI
can deepen inequalities across domains such as employment, edu-
cation, and healthcare by amplifying biases in decision-making pro-
cesses [27, 64, 67]. For instance, in an employment context, reliance
on AI for performance evaluations or hiring decisions could under-
mine trust between employees and employers, fostering perceptions
of unfairness [73] and limiting opportunities [48] for meaningful
human interaction. Drawing on historical data, a similar situation
emerged with the internet in the early 2000s, where researchers
warned about internet inequality reinforcing inequality in oppor-
tunities for social participation [11, 26, 79]. By the 2010s, studies
revealed that increased mobile penetration had a positive effect on
income equality [2, 41, 80]. Consequently, a growing body of work
has focused on how access to AI technologies, including LLMs, can
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impact these inequalities, highlighting the critical importance of
equitable access to AI [34].

Despite growing interest in equitable access to AI [29, 68], our
understanding of how AI integration shapes social dynamics re-
mains limited. Prior studies on human-AI cooperation have ex-
plored how individuals’ attitudes and collaboration preferences
vary when interacting with humans versus AI systems, often in-
fluenced by factors such as perceived similarities and trustwor-
thiness [31]. Additionally, research on human interactions with
automated machines—typically pre-programmed by humans has
provided foundational insights into how users adapt to and rely
on automated decision-making [35, 44]. However, the adaptive and
autonomous nature of AI systems introduces new complexities,
highlighting the need for a more comprehensive investigation into
how these technologies reshape interpersonal relationships and so-
cial structures once AI-augmented and non-augmented individuals
interact, compete or cooperate.

This research gap is particularly critical given the widening dis-
parity in access to advanced AI technologies, driven by an arms
race among corporations and nations to develop more powerful
LLMs [21, 31, 45, 54]. Such unequal distribution of AI capabilities
risks amplifying existing social and economic inequalities [34], as
those with privileged access can disproportionately benefit from
enhanced cognitive and decision-making support [48]. This raises
urgent questions about whether AI will ultimately serve as an equal-
izer, deepen societal divisions, or not affect human cooperation.
Addressing this issue requires moving beyond traditional human-AI
interaction studies.

Game theory provides a robust framework for studying trust [30,
42], cooperation [9, 10], and competition [14] among agents across
diverse decision scenarios, reflecting the competing motivations
humans often face in their daily interactions with one another.
Cooperation, for example, often requires willingness to sacrifice
some of one’s personal interests for the benefit of the group while
exposing oneself to the risk that others may not cooperate in re-
turn [31]. Game theorists design economic games to construct such
mixed-motive decision scenarios for use in behavioural studies.
This is well suited to study AI-augmented versus non-augmented
people’s cooperative dispositions, since it enables comparisons of
new results with well-established benchmarks. Economic games
have been also extensively used to investigate people’s reduced co-
operation with members of their out-group [4]. This is particularly
relevant to our research question, as AI augmentation may lead to
the stratification of societies into distinct groups of differently aug-
mented people. Here, we specifically focus on the well-known Trust
game to investigate how AI augmentation affects trust and trust-
worthiness between interacting parties and the Prisoner’s Dilemma
to explore the tension between cooperation and self-interest when
AI-augmented individuals interact with non-augmented people.

While previous research has looked at social perception of aug-
mented humans [74] or economic games with autonomous AI [31],
research is scarce on economic decision-making in interactions of
AI-augmented and non AI-augmented humans. This study advances
the understanding of how AI augmentation shapes human social in-
teractions and decision-making using game theory. While previous
research has predominantly focused on human interactions with
technology as mere tools or examined how human-like traits in

AI affect people’s perceptions [61], the integration of AI as part of
human identity remains underexplored. As personalized AI systems
become embedded in daily life, social interactions will increasingly
be shaped by both human traits and the AI systems individuals
use. We hypothesize that the introduction of AI into our societies
threatens to reduce cooperation between AI-augmented and non-
augmented individuals due to perceived dissimilarity, which weak-
ens trust — a key driver of cooperation [4, 55]. To test this, we
conducted a comparative study using five conditions based on the
Trust game and the Prisoner’s Dilemma. While our results show
that there are no significant differences in cooperation decisions be-
tween AI-augmented participants and non-augmented participants,
we also found that there are differences in how these two types of
users perceive each other. This work contributes to the HCI field by
providing insights into how AI augmentation affects cooperation,
informing the development of policies and design strategies that
encourage responsible and equitable AI integration.

2 RELATEDWORK
This section starts with a brief overview of game theory and its role
in understanding the dynamics of cooperation. Next, we discuss
how these concepts are applied within the field of HCI. Following
this, we examine the concept of augmented humans and their in-
terpretation in HCI research. Finally, we explore the relationship
between AI and power structures, highlighting how AI influences
social dynamics and inequality.

2.1 Game Theory and Cooperation
Economic games have been widely used to evaluate cooperative
preferences and social behaviors, offering researchers a controlled
framework to investigate the conditions that promote cooperation
[9, 10, 53]. In particular, behavioral game theorists use the Trust
game [30, 42] and the Prisoner’s Dilemma [49] to explore the dy-
namics of cooperation, trustworthiness, and trust in mixed-motive
social scenarios. Insights from these paradigms have shaped the de-
velopment of many (sometimes competing) theories of human coop-
eration in psychology, economics, philosophy, and other disciplines.
Some theories posit that humans are inherently pro-social [23, 53];
others — that cooperation is a form of mutually beneficial and re-
ciprocal tacit compromise [32, 65]; yet others analyze it through
the prism of entrenched social norms that are upheld by mild forms
of punishment [3, 6, 7]. Lately these insights have been used to
develop new methods to foster cooperation between interactive
artificial agents [47] and between humans and machines [15, 62].

2.2 Game Theory in HCI
Human interaction with intelligent machines in purely competitive
settings is well known, e.g., in “zero-sum” games of chess, Go, and
StarCraft II. However, lately game theorists began investigating
human interaction with machines also in mixed-motive, not purely
competitive, settings. The results so far have shown that people
cooperate with machines significantly less than they do with hu-
mans [28, 40, 78]. One explanation is people’s willingness to exploit
machines for selfish gain: people are significantly more keen to ex-
ploit "well-meaning" cooperative machines than they are to exploit
similarly cooperative humans [31, 69]. These results raise several
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interesting questions. Would people cooperate with machines more
if the latter displayed human-like features? Conversely, would peo-
ple cooperate with humans less if the latter displayed machine-like
features?

Previous research has shown that the more human-like quali-
ties an agent has, whether through facial expression, gesture, or
conversational skills, the more likely humans are to anthropomor-
phize it, attributing human-like social intentions to it [76]. This
anthropomorphism can significantly increase people’s trust in and
cooperation with machines, and raise expectations concerning fair-
ness of AI systems [71, 77]. People associate warmth and compe-
tence with AI systems that display human characteristics, which,
in turn, affects people’s willingness to cooperate with those sys-
tems [43]. People who interact with anthropomorphic compared to
non-anthropomorphic agents exhibit lower initial levels of trust, but
greater trust resilience, as anthropomorphism tends to buffer the
impact of encountered trust violations [16]. People are also more
likely to disclose personal information to anthropomorphic (as com-
pared to non-anthropomorphic) agents [37], reflecting greater trust
in interactions with them.

As in other areas of human-technology interaction, ethical con-
siderations must be addressed as well. AI is able to alter human
decision-making processes [36] and to subtly nudge human behav-
iors [17], raising important ethical considerations about human
autonomy and control in human-machine interactions [12, 46, 58].
Understanding the dynamics of such interactions with the help of
game theory is fruitful for designing AI systems that interact with
humans not only effectively, but also ethically [63].

2.3 Human Augmentation
Human augmentation refers to the enhancement of human capabil-
ities through technology [20], extending physical, cognitive, and
perceptual functions beyond natural limits [52]. Human augmenta-
tion empowers individuals by integrating technology to support and
amplify human abilities [59], e.g., augmented reality glasses that
enrich visual perception [75]. These technologies are not merely
tools but human cognition support [22], reshaping how people
interact with the world and with one another.

A distinction between human augmentation and AI lies in the
role of autonomy [73, 74]. AI systems operate independently to
solve problems or make decisions, often minimizing human in-
volvement. In contrast, human augmentation technologies enhance
human decision-making while preserving human agency [5]. This
ensures that humans remain central to the process, with technology
serving as an extension of their capabilities. AI-augmented humans
represent an evolution of this concept, where advanced AI systems
adapt to individual needs and contexts [75], embedding intelligent,
responsive AI systems into daily human activities. Examples in-
clude context-aware AI in wearable devices, predictive cognitive
aids, and interactive robotics that enhance human performance
[57]. Such deep integration raises critical questions about inter-
actions between AI-augmented and non-augmented individuals,
particularly in cooperative and competitive scenarios.

Despite the rapid advancement of augmentation technologies,
our understanding of their impact on social dynamics remains

limited [74]. Research has traditionally focused on human inter-
actions with autonomous AI systems or tools with human-like
traits [40]. However, the interaction between AI-augmented and
non-augmented humans introduces unique challenges. Perceived
disparities in capabilities may undermine trust and reduce coopera-
tion, as similarity often underpins prosocial behavior [55]. Under-
standing these dynamics is essential for anticipating how human
augmentation might reshape social structures and relationships.

3 STUDY DESIGN
To examine the impact of AI assistance on decision-making in eco-
nomic games, we conducted two between-subjects experiments
focused on (1) the Trust Game and (2) the Prisoner’s Dilemma.
Participants (N = 570) were randomly assigned to one of five exper-
imental conditions distributed across both games. The Trust Game
included three conditions: (1) a control group (TC) where neither
player received AI assistance, (2) Investor (Player A) assisted by AI
(TA), and (3) Dealer (Player B) assisted by AI (TB). The Prisoner’s
Dilemma included two conditions: (4) a control group (PC) where
neither player received AI assistance, and (5) player A assisted by
AI (PA). In the Trust Game, three conditions were necessary as each
role involves distinct levels of power, whereas, in the Prisoner’s
Dilemma, only two conditions were included since both roles have
equivalent power. Thus, a comparison between a control group and
one AI-assisted player was sufficient. This design enabled a system-
atic examination of how AI assistance influences cooperative and
competitive decision-making across different roles and game types
(see Table 1).

3.1 Participants
To collect data for the factor analysis, we administered an online
survey via Prolific, targeting native English-speaking participants
from the United States and the United Kingdom. A total of 570 re-
sponses were recorded. After excluding 86 participants due to failed
comprehension and attention checks or did not complete the entire
study, the final dataset included 484 valid responses. For the Trust
Game experiment, 296 participants were included (152 female, 144
male;𝑀 = 35.51 years, 𝑆𝐷 = 9.90), with 279 participants from the
United Kingdom and 17 from the United States. For the Prisoner’s
Dilemma experiment, 188 participants were included (93 female,
99 male;𝑀 = 37.63 years, 𝑆𝐷 = 11.92), with 107 participants from
the United Kingdom and 21 from the United States. Participation
was voluntary, and participants could terminate the experiment at
any point. Participants were compensated at a rate of 9 GBP per
hour. We followed the ethics guidelines of our institution for fair
treatment of participants.

3.2 Task
To evaluate participant behavior under conditions of unbalanced AI
access, we implemented two game scenarios: the Trust Game and
the Prisoner’s Dilemma. To introduce the imbalance, participants
were explicitly informed whether the AI assistant was available
to their counterpart, to themselves, or neither player, depending on
the experimental condition. When available, the AI assistant was
integrated as a chatbot window directly on the game interface,
allowing the assigned player to request decision-making support.
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Figure 1: Experimental Procedure. Participants played either the Trust Game (TA: Player A AI-assisted, TB: Player B AI-assisted,
TC: control) or the Prisoner’s Dilemma (PA: one player AI-assisted, PC: control) to assess the impact of AI assistance on
cooperation and competition.

In contrast, participants without AI access had no chatbot interface
and interacted with the game independently. This design enabled
controlled manipulation of AI access to assess its impact on player
behavior and decision-making.

3.2.1 Trust Game. The Trust Game involves two players: Player A
(i.e., the Investor) and Player B (i.e., the Drawer). Player A receives
an initial sum and decides how much to send to Player B; the sent
amount is multiplied (typically by three). The Player B then chooses
how much to return to the Player A. For example, Player A chooses
between trusting Player B (Option A1) or not trusting (Option A2). If
Player A selects Option A2, both players receive a guaranteed payoff
of 10 points each. If Player A chooses to trust (Option A1), Player
B then decides between Option B1, where both players receive 15
points, or Option B2, where Player B takes 30 points and Player
A receives nothing. This structure captures the core dynamics of
trust and reciprocity, where Player A risks exploitation for potential
mutual gain, and Player B must choose between fairness and self-
interest.

3.2.2 Prisoner’s Dilemma. The Prisoner’s Dilemma is a strategic
game where two players choose to either cooperate or defect with-
out knowing the other’s choice. Mutual cooperation leads to moder-
ate rewards for both, but defection offers a higher individual payoff
at the risk of mutual loss if both players defect. For example, each
player starts with 10 points and chooses between two options: If
both players choose to cooperate (A1 and B1), they each receive
20 points. If Player A cooperates (A1) while Player B defects (B2),
Player A earns 0 points, and Player B earns 30 points. Conversely, if
Player A defects (A2) and Player B cooperates (B1), Player A gets 30
points and Player B gets 0 points. In the Prisoner’s Dilemma, both
players make their moves simultaneously, meaning that players in
the same game face exactly the same situation. This is a key distinc-
tion from the Trust Game, where players’ decisions are sequential
and influenced by the preceding player’s actions. If both defects (A2
and B2), they each receive 10 points. This setup captures the con-
flict between individual rationality and collective benefit—mutual
cooperation yields the highest joint payoff.

3.3 Apparatus
The experiments were developed and implemented using Lioness
Lab [25], a web-based platform for interactive online experiments.
Following the design phase, the experiments were deployed to a
Google Cloud Server hosted in Hamina, Finland, utilizing Bitnami
for package management and deployment automation. Participant
suggestions were generated using the Llama 3 8B model, executed
on Hugging Face’s infrastructure. We chose to use Llama 3 instead
of calling an LLM API because it offers significantly better privacy
protections compared to a generic LLM AI, as it allows full control
over data handling, deployment, and compliance The model oper-
ated on an NVIDIA A10G GPU with a configuration of 12 vCPUs,
46 GB RAM, and 24 GB VRAM, ensuring efficient model inference
and response generation. The input provided to the model speci-
fies which player the model should assist. It also breaks down the
game rules step by step, detailing the potential risks and rewards
associated with each option that the players might choose.

3.4 Procedure
Participants were recruited through Prolific and redirected to the ex-
perimental platform. Upon landing on the main page, they received
information about the study’s purpose and provided informed con-
sent. Participants were then randomly paired into dyads, assuming
one of two roles: Player A or Player B. Each dyad was randomly
assigned to one of two experiments and one of the experimental
conditions (see Table 1). Participants interacted anonymously, with
no personal information shared between partners.

At the start of the experiment, participants read a consent form
and the game instructions. Importantly, theywere not informed that
the tasks were based on game theory paradigms to prevent influ-
encing their behavior. The instructional language was intentionally
kept neutral to minimize bias. Participants proceeded to play the as-
signed game and, upon completion, completed the SHAPE scale and
items from the Warmth and Competence model (see Section 3.5).
Afterward, participants were debriefed and compensated for their
participation.

In conditions 2, 3, and 5, one participant of the dyad would had
access to an AI assistant for decision support. The participant with
AI assistant could ask for suggestions regarding their gameplay
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(a) Trust Game Procedure (b) Prisoner’s Dilemma Procedure

Figure 2: Comparison of the Trust Game and the Prisoner’s Dilemma procedures.

Table 1: Experimental conditions for both experiments the
Trust Game and Prisoner’s Dilemma.

Condition Abbreviation Game AI Support

Condition 1 TC Trust Game Control group (No AI)
Condition 2 TA Trust Game Player A was assisted by AI
Condition 3 TB Trust Game Player B was assisted by AI

Condition 4 PC Prisoner’s Dilemma Control group (No AI)
Condition 5 PA Prisoner’s Dilemma Player A was assisted by AI

(e.g., “Should I choose option A1?” or "Will the other player take
the risky move?"). To ensure engagement with the AI assistant,
participants were required to summarize the AI’s suggestions after
each interaction. Both participants in a dyad would be informed
about who had access to the AI and who did not.

It was important to note that in conditions 2 and 5, the participant
with AI was guaranteed to use the AI during gameplay. However,
according to the rules of the Trust Game, Player B could only move
after Player A had made their move. As a result, in condition 3
(where Player B had the AI assistant), Player B only had the oppor-
tunity to use the AI if Player A chose option A1, which allowed
the game to continue. If Player A chose option A2, the game ended
immediately, and Player B did not get a chance to move or use the
AI.

At the conclusion of the study, participants provided feedback on
their perceptions of augmented humans, the fairness of the game,
and their evaluation of the other player. Additional feedback was
collected regarding the decision-making experience of those with
AI support.

3.5 Measures
We collected both quantitative and qualitative data to analyze par-
ticipant behavior and perceptions across the experimental condi-
tions. Quantitative data included two primary components. First,
we recorded participants’ in-game decisions — specifically, whether
they chose to collaborate or defect. Participants were also asked
to predict their opponent’s behavior. These predictions provided

insight into participant’s expectations and strategic reasoning. Sec-
ond, we measured participants’ perceptions of fairness, confidence
in their decisions, and expectations about how AI assistance might
influence their opponent’s behavior. These measures were collected
using a 0 – 100 slider scale. Participants rated the fairness of the
game setup, considering the allocation of AI assistance, their confi-
dence in their decisions, and their beliefs about how AI might alter
their opponent’s choices. This data allowed us to assess how AI
presence affected participants’ sense of fairness and trust in the
game dynamics.

To evaluate attitudes toward the AI-augmented player, we used
the SHAPE scale [74], which measures two dimensions: perceived
agency and social threat. Perceived agency captures how much
control the AI-augmented player is believed to have over their
decisions, while social threat assesses the extent to which the aug-
mented player is seen as violating social norms. Additionally, we
applied the stereotype content model [24] to examine participants’
social judgments of their opponent across four dimensions: warmth,
competence, status, and competition. Warmth reflects whether the
opponent is perceived as helpful or harmful, and competence mea-
sures their ability to act on those intentions. Status and competition
further explore the perceived social standing and competitive stance
of the other player.

Qualitative data were gathered through two methods. In condi-
tions where participants had access to the AI assistant, we collected
the specific prompts they used to request suggestions. This data
provides insight into how participants engaged with AI support
and integrated it into their decision-making. At the end of the
experiment, all participants were invited to provide open-ended
feedback about their experience, perceptions of fairness, the role of
AI assistance, and their evaluations of the other player.

3.6 Data Analysis
The data collected was processed and cleaned, participants were
excluded if they failed attention checks, timed out due to pairing
issues, or dropped out mid-game. After filtering, 484 participants
provided valid data, resulting in a 84.91% rate. Final participant
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distribution across conditions was as follows: 88 in PC, 100 in PA,
96 in TC, 100 in TA, and 100 in TB. In AI-assisted conditions, 48
participants in TA, 26 in TB, and 50 in PA actively used the AI
assistant. AI usage was notably lower in the TB condition because
Player B lacked access if Player A ended the game in the first round.
The Trust Game recorded 217 decisions, fewer than the total 296
participants, due to early game termination by Player A, preventing
Player B frommaking a choice. Specifically, Player B decision counts
were: 22/48 in TC, 19/50 in TA, and 28/50 in TB.

Player performance was analyzed using Chi-square tests and
proportion tests on participants’ decisions and predictions across
the experimental conditions in each game. These tests assessed
whether AI access influenced decision patterns and predictions of
opponent behavior. Data from the questionnaires were analyzed
using One-Way Analysis of Variance (ANOVA) or Welch’s t-tests
on six factors related to opponent and AI-augmented player per-
ceptions. Comparisons were made across conditions and between
players’ roles (A and B) within the same condition for both the
Trust Game and the Prisoner’s Dilemma. Spearman’s rank cor-
relation was used to examine relationships between participants’
perceptions and their in-game decisions, identifying how subjective
evaluations influenced behavior. Qualitative data from participants’
AI queries were analyzed through thematic analysis using induc-
tive and deductive coding. Questions raised by participants to AI
were categorized by intent, such as "Decision-Making" or "Direct
Option/Goal Queries", using a keyword-matching method. We then
quantified how frequently each type of question was asked to mea-
sure how participants engaged with the AI assistant as shwon in
Table 2.

4 RESULTS
This section presents the findings from both experiments. First, we
report the results of the Trust Game, followed by the results of the
Prisoner’s Dilemma. Lastly, we summarize key qualitative insights
from participants’ interactions with the AI assistant.

4.1 Experiment 1. Trust Game
Decision and Prediction. Player A (Investor) is the first to make a

decision in the Trust Game, while Player B (Drawer) makes their
choice only after observing Player A’s decision. Using a Chi-square
test of independence across three conditions, we found that the
involvement of AI does not significantly influence players’ deci-
sions in the trust game scenario. For Player A, the relationship
between AI assistance and decision-making was not significant,
𝜒2 (2, 𝑁 = 149) = 2.91, 𝑝 > .05. Similarly, for Player B, no signifi-
cant relationship was observed, 𝜒2 (2, 𝑁 = 69) = 2.20, 𝑝 > .05. The
difference in sample size between Player A and Player B is due to
the game rules, which the game ends immediately when Player
A selects Option A2, and Player B does not get an opportunity to
make a decision.

Additionally, proportion tests were conducted to test the pro-
portion of cooperative decisions across the control condition (TC)
with the TA and TB conditions. The results showed no significant
differences. The proportion of Player A’s and Player B’s decision
to cooperate or not cooperate did not vary significantly across the
conditions, as illustrated in Fig.3a and Fig.3b separately.

Control Group Player A Augmented Player B Augmented
Conditions
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(a) Proportion of Player A’s Decision by Condition.
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(b) Proportion of Player B’s Decision by Condition.

Figure 3: Proportion of Player A’s and Player B’s Decisions
by Condition in the Trust Game.

We also asked Player A to predict if Player B would cooperate or
not. The Chi-square test revealed that Player A’s predictions about
Player B’s move did not differ significantly across conditions, with
results showing a very close match to the expected distribution,
𝜒2 (2, 𝑁 = 149) = 0.36, 𝑝 > .05. We found that when Player A is
assisted by AI in the PA condition, it has a significant impact on
Player B’s predictions compared to the PC condition, where Player
A isn’t assisted by AI. This is indicated by a significant Chi-square
test, 𝜒2 (2, 𝑁 = 69) = 7.98, 𝑝 = .019. Fig.4a and Fig.4b illustrate the
proportions of Player A’s and Player B’s predictions about whether
the other player will cooperate or not cooperate.

Questionnaire Data. Using the questionnaire results, we analyzed
differences in players’ perceptions across the six factors from the
two questionnaires (Agency, Social Threat, Warmth, Competence,
Status, and Competition). To determine whether these factors varied
significantly across the three conditions, we conducted a One-Way
ANOVA, comparing the mean values of each factor between the
conditions.

We found significant differences between conditions on factor
Competition at the 𝑝 < .05 level, where 𝐹 (2, 293) = 4.53, 𝑝 = .011.
The mean value of factor Competition is highest in TB condition
(𝑀 = 0.625,𝑆𝐷 = 0.20), followed by TC condition (𝑀 = 0.59, 𝑆𝐷 =

0.23), and lowest in TA condition (𝑀 = 0.53, 𝑆𝐷 = 0.25).
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Figure 4: Proportion of Player A’s and Player B’s Predictions
by Condition in the Trust Game.

In addition to the factors, significant differences were found for
the Sider scale question Fairscale 𝐹 (2, 293) = 10.1, 𝑝 = .007, indi-
cating that perceptions of fairness vary across the conditions. The
mean value of Fairscale is highest in TA condition (𝑀 = 66.59, 𝑆𝐷 =

30.36), followed by TC condition (𝑀 = 64.01, 𝑆𝐷 = 30.73)and lowest
at TB condition (𝑀 = 53.29, 𝑆𝐷 = 32.85).

We then analyzed the differences in perception between the
two players within each condition, repeating this analysis across
all three conditions using Welch’s t-test. We found a significant
difference in the perceived warmth between Player A and Player B
in the TC and TB conditions. In the TC condition, both Player A
(𝑀 = 0.5, 𝑆𝐷 = 0.3) and Player B (𝑀 = 0.68, 𝑆𝐷 = 0.14) who did use
AI ; Player A has a significantly lower perceived warmth, 𝑡 (67.92) =
−3.26, 𝑝 = .002. In TB condition, Player A (𝑀 = 0.47, 𝑆𝐷 = 0.24)
doesn’t have AI assistant, but Player B (𝑀 = 0.65, 𝑆𝐷 = 0.2) has one.
Player A has a significantly lower perceived warmth, 𝑡 (64.41) =
−3.48, 𝑝 < .001. A Cohen’s d of -0.779 indicates a moderate to large
effect size, with the negative value indicating that Player B’s mean
warmth is higher than Player A’s. These findings highlight the
potential impact of AI involvement on interpersonal perceptions
within the game. Player A perceived lower warmth from Player B
in the TC and TB conditions may be attributed to the dynamics of
the trust game. For example, when Player A selects option A1, but
Player B chooses option B2, Player A receives 0 points, potentially
leading to negative perceptions.
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Figure 5: Proportion of Player A’s and Player B’s Decision by
Condition in Prisoner’s Dilemma.

To explore how players in the same role (Player A or Player B)
behave differently depending on whether they have AI support, we
compared their responses to identical questions across scenarios
with and without AI. However, all factors showed no significant
differences.

4.2 Experiment 2. Prisoner’s Dilemma
Decisions and Predictions. We conducted a Chi-square test to

examine the relationship between Player A’s and Player B’s de-
cisions across conditions. The results indicate that Player A’s de-
cisions did not differ significantly between the two conditions,
𝜒2 (2, 𝑁 = 96) = 3.03, 𝑝 > .05. Similarly, Player B’s decisions also
showed no significant difference, 𝜒2 (2, 𝑁 = 96) = 0.00, 𝑝 > .05. The
proportion of Player A’s and Player B’s decisions about cooperating
or not cooperating are illustrated in Fig.5a and Fig.5b separately.

We also used chi-square independent test to verify their pre-
dictions of their opponent’s moves in two conditions. The results
showed no significant differences for Player A, where 𝜒2 (2, 𝑁 =

96) = 0.81, 𝑝 > .05., same as Player B, where 𝜒2 (2, 𝑁 = 96) =

0.07, 𝑝 > .05. Fig.6a and Fig.6b illustrate the proportions of Player
A’s and Player B’s predictions about whether the other player will
cooperate or not cooperate.

Questionnaire Data. We performed n Welch’s t-test to examine
how the involvement of AI influences players’ perceptions. This
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Figure 6: Proportion of Player A’s and Player B’s Predictions
by Condition in Prisoner’s Dilemma.

was achieved by comparing the questionnaire results between the
PA (players with AI involvement) and PC (players without AI in-
volvement) groups. No significant statistical difference was found.

Comparing two players’ responses in the same condition using
Welch’s t-test gave us insights into how obtaining AI would impact
a player’s perception of their opponent. We observed a difference in
how players perceive the Competition level of augmented humans
in the PA condition. Specifically, the Welch’s t-test of the six factors
revealed a significant difference in competition factor between
Player A (𝑀 = 0.56, SD = 0.26) and Player B (𝑀 = 0.69, 𝑆𝐷 = 0.2),
𝑡 (92.48) = −3.0, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = .034,𝐶𝑜ℎ𝑒𝑛′𝑠𝑑 = −0.6, this latest
indicating a moderate effect size, with Player B scoring higher than
Group 1 Player A on the factor of social threat.

4.3 Correlation Analysis
Trust Game Correlations. Spearman’s rank correlation was com-

puted to assess the relationships between various factors and the
decision variable in the Trust Game (Figure 7a). The analysis re-
vealed a significant positive correlation between the factors Compe-
tence_Score and decision, with 𝑟 (215) = 0.28, 𝑝 < 0.001, suggesting
that higher competence scores were associated with more favorable
decisions. Additionally, a positive correlation was found between
Status_Score and decision, with 𝑟 (215) = 0.17, 𝑝 = 0.02, indicating
that higher status scores were linked to cooperative decisions. Other

notable correlations included a moderate positive relationship be-
tween ST_Score and Agency_Score, with 𝑟 (215) = 0.44, 𝑝 < 0.001,
and a positive correlation betweenWarm_Score and Status_Score,
with 𝑟 (215) = 0.47, 𝑝 < 0.001. These results highlight the roles of
competence (𝑟 = 0.28) and status (𝑟 = 0.17) in influencing decision-
making, as well as the interconnectedness of other factors, such
asWarm_Score (𝑟 = 0.47) and Agency_Score (𝑟 = 0.44), within the
Trust Game.

Prisoner’s Dilemma Correlation. We used Spearman’s rank corre-
lation to measure the correlation within six factors and decisions as
shown in Fig.7b. The Spearman correlation analysis revealed sev-
eral significant relationships among the variables in the context of
the Prisoner’s Dilemma. There was a positive correlation between
Agency and Social Threat (𝑟 (186) = 0.27, 𝑝 = .0001), as well as
between Status and Competence (𝑟 (186) = 0.52, 𝑝 = .0000), indicat-
ing that higher perceptions of status are strongly associated with
higher competence. Conversely, Warm showed a negative correla-
tion with both Social Threat (𝑟 (186) = −0.17, 𝑝 = .022) and Agency
(𝑟 (186) = −0.15, 𝑝 = .04), suggesting that warmth perceptions may
inversely relate to agency and ST dimensions. Additionally, Warm
had a positive correlation with Status (𝑟 (186) = 0.25, 𝑝 = .0004), in-
dicating alignment between warmth and status perceptions. Finally,
there was a positive correlation between decision and Competence
(𝑟 (186) = 0.20, 𝑝 = .0069), suggesting that decision-making is influ-
enced by competence levels. These findings provide insights into
the interrelationships among these psychological and behavioural
factors.

4.4 Dialogue with AI Assistant
We analyzed the prompts players used to interact with the AI assis-
tant, applying inductive thematic analysis to 177 prompts collected
from 125 participants. This dataset includes 74 prompts from 48
participants in TA, 44 prompts from 26 participants in TB, and 78
prompts from 51 participants in PA.

On average, each participant interacted with the AI assistant for
1.57 turns, with a minimum of 1 turn and a maximum of 8 turns.

We conducted a thematic analysis on the 196 prompts and built 5
categories of questions asked, including “General Guidance", “Deci-
sion Making", “Direct Option/Goal Queries", "Predicting Opponent",
"Follow Up ", "Greetings"and “Copied Instructions " (2). Participants
followed the AI’s suggestion 65.6% of the time overall, with 66.7%
in the TA condition, 69.2% in the TB condition, and 62.7% in the PA
condition.

5 DISCUSSION
While we did not observe any differences in cooperation decisions
across roles or games, our findings indicate that players’ perceptions
of others were influenced by the AI-augmentation manipulation.
In the Trust Game, Player B’s predictions of Player A’s moves were
significantly affected by the involvement of AI. Specifically, Player
B exhibited significantly lower expectations of Player A choosing to
cooperate when only Player A had access to AI. Conversely, Player
B’s expectations of cooperation increased when Player B had AI
and Player A did not.

Regarding subjective data on perceived competition and fairness,
our findings revealed potential explanations. Player A perceived
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(a) Spearman Correlation Matrix (Trust Game).
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(b) Spearman Correlation Matrix (Prisoner’s Dilemma).

Figure 7: Comparison of Spearman Correlation Matrices for the Trust Game and Prisoner’s Dilemma.

Table 2: Summary of Participant Question Categories

Category Explanation Examples Count

General Guidance Request open-ended advice "Can you guide me?" 34
Decision Making Seeking guidance about making a choice "Which one I should choose?" 68
Direct Option/Goal Queries Seeking assistance on considering a specific goal/option "I want to be fair, which should I go for?" 17
Predicting Opponent Seeking assistance on predicting opponent’s move "What do you think the other will choose?" 8
Follow Up Response to the suggestions provided by AI "Yes", "b2" 38
Geetings Greeting the AI "Hi" 4
Copied Instuctions Copied instructions as prompt (the instructions) 8

significantly lower warmth from Player B when Player A had AI
assistance. In the Prisoner’s Dilemma, players without AI perceived
higher levels of competition from AI-augmented opponents com-
pared to those with AI assistance.

To contextualize these findings, Karpus et al. [31] demonstrated
that while users often exploit AI agents, they do not exploit AI-
augmented humans in economic games such as the Trust Game and
Prisoner’s Dilemma. Although our study did not find significant
differences in cooperation decisions, several interpretations arise.

Participants may have assumed AI-augmented players had full
agency over their decisions, which aligns with our findings on
decision-making perceptions. This assumption likely discouraged
the exploitation of AI-augmented players perceived as potentially
benevolent.

We anticipated that AI-augmented players would be perceived
as more powerful and of higher status, an expectation was not sup-
ported by our results. Instead, interpersonal perceptions of warmth,
but not competence, were primarily influenced by the manipulation.
This suggests that AI augmentation, particularly through widely ac-
cessible tools such us LLMs [18], does not inherently alter social sta-
tus or cooperative behaviour. Instead, AI augmentation may instead
be viewed as a competitive tool without fundamentally changing
perceptions of benevolence. Indeed, we found relatively high auton-
omy in participants’ interactions with the AI. For the prompts under

the category "General Guidance" and "Decision Making", AI systems
are asked to make suggestions. For the prompts under "Direct Op-
tion/Goal Queries", "Predicting Opponent" and "Follow Up", the AI
assists human’s thinking process, such as calculating probabilities.
Thus, in interaction with the AI system, the player remained in the
driving seat when making the decision. These findings align with
prior research on cognitive and motor augmentations [73]. Unlike
motor augmentations, which produce externally observable effects,
cognitive augmentations enhance internal processes like memory
and decision-making. As a result, their effects on interactions may
only become apparent over time or in specific contexts.

Both augmented and non-augmented participants might have
realistically assessed AI’s limited utility in one-shot game-theory
scenarios. The absence of historical or personal data renders AI less
effective in informing economic decisions. Additionally, the inher-
ent randomness and unpredictability of one-shot games complicate
meaningful AI contributions [14, 56]. This limited utility likely re-
inforced the perception of AI as a tool rather than an augmentation
fundamentally altering human abilities.

Although no significant differences were observed across all play-
ers’ perceptions in the three conditions, notable differences emerged
in scenarios where one player had AI augmentation and the other
did not. Non-augmented players tended to perceive AI-augmented
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opponents as less warm, and they regarded AI-augmented oppo-
nents as more competitive, suggesting that participants primarily
focused on immediate game experiences rather than considering
broader capabilities or societal implications of AI-augmentation.
This limited awareness aligns with findings that cognitive aug-
mentations, unlike motor augmentations, are harder to detect and
evaluate [73]. Because cognitive augmentations operate internally,
their effects may only become noticeable through prolonged or spe-
cific interactions. Notably, participants recognized AI’s impact on
competitiveness but did not associate it with increased competence
or status.

The lack of historical data and the inherent unpredictability of
such games hinder AI’s ability to provide actionable guidance. This
aligns with studies highlighting challenges in leveraging AI for
decision-making in uncertain, risky scenarios [72].

Cognitive augmentations, often perceived as more dangerous
than sensory or motor augmentations, raise concerns about mental
autonomy and societal inequalities [73]. Enhanced cognitive abili-
ties may deepen inequalities and obscure societal transformations.
The transition from AI as a tool to augmentation occurs subtly in
daily life, often without recognition of its broader impacts. Aware-
ness of these dissimilarities is critical to addressing fairness and
trust issues in human-AI interactions. Thus, in this work, we use
Game Theory to examine how cognitive augmentation influences
human interaction and decision-making. Augmentation alters how
individuals engage with others [72], shaping perceptions of au-
thority, trust, and fairness [73]. The ability to process information
faster or make more accurate predictions introduces a structural
imbalance, affecting cooperation and negotiation between those
with and without augmentation. Game Theory provides a way to
model these shifts, making it possible to study how strategic be-
havior adapts to these disparities. Future research could explore
scenarios such as asymmetric information, where augmented in-
dividuals must prove credibility to non-augmented counterparts;
public goods games, where augmented individuals contribute more
but may expect greater control over resources; or ultimatum games,
where cognitive advantages affect perceptions of fairness and bar-
gaining power.

6 IMPLICATIONS
Our findings have several important implications. Following van
Berkel and Hornbæk [70], we identify three implications for HCI
concerning society, policy, and theory. From a societal perspective,
our results show the need for increased public awareness of the
subtle impacts of cognitive augmentation. As AI systems become
more integrated into daily life, understanding their effects on inter-
personal dynamics and social structures becomes a cornerstone for
social acceptance by peers [73]. Our study shows that the differen-
tial access to AI augments perceived warmth and trust, particularly
disadvantaging non-augmented individuals. These findings align
with prior research indicating that perceived fairness and social
dynamics are influenced by asymmetric technology access [24].
In our study, non-augmented participants often perceived their
AI-augmented peers as more competitive, thus challenging social
norms of cooperation. As a consequence, the HCI community must
consider an equitable AI system design that prioritizes inclusivity

and mitigates social biases [48]. The reinforcement of disparities
in perceived agency and warmth between augmented and non-
augmented players further reflects risks of exacerbated inequalities
within AI-augmented societies.

The behavior of non-augmented users towards AI-augmented
counterparts may shift based on perceptions of fairness, compe-
tence, and competition introduced by augmentation. As demon-
strated in the study, non-augmented users often perceive aug-
mented individuals as more competitive and less warm, poten-
tially reducing trust and cooperative behavior. These shifts align
with research showing that perceived dissimilarities or technolog-
ical advantages can create social distance and foster a sense of
inequity [31]. Over time, this dynamic may evolve as familiarity
with AI augmentation increases, potentially reducing initial bi-
ases but also reinforcing strategic behaviors where non-augmented
users anticipate exploitation or unequal reciprocity. On a specula-
tive note, this could lead to a polarization effect, where augmented
individuals are viewed as agents of power rather than collaborators.
Understanding and mitigating these shifts will require designing
systems that highlight shared goals and emphasize augmentation
as a supportive rather than divisive factor.

Policies can be established that describe frameworks that pro-
mote fairness and transparency for AI accessibility, counteracting
social biases and unfair treatment. However, establishing such poli-
cies represents another challenge. Policymakers can be subject to
their own biases while addressing how differential AI access can
influence societal norms, cooperation, and perception of fairness
to prevent social divides. We suggest that AI interface designers
should create systems that foster mutual understanding, reduce
perceived dissimilarities, and enhance trust in mixed human-AI
teams [43]. With asymmetric access to AI systems, it is necessary
to communicate shared objectives in a transparent way between
non-augmented and augmented users.

7 LIMITATIONS
One limitation of our study lies in the context-specific nature of our
findings. The Trust Game and Prisoner’s Dilemma, as one-shot eco-
nomic games, may not fully capture the complexity of real-world
interactions involving AI-augmented individuals (for typical cri-
tiques on the validity of economic games and potential remedies,
see Pisor et al. [50]) The lack of iterative interactions and longi-
tudinal data (for a longitudinal version of the prisoner’s dilemma
see [51]) limits the generalizability of our results. Additionally, the
simplified decision-making environment may have masked more
subtle dynamics of human-AI collaboration and competition.

Also, as discussed in Section 2.3, a key distinction between hu-
man augmentation and conventional AI lies in the level of autonomy
[73]. However, the extent to which people can perceive this differ-
ence remains unclear. Future studies should explore different ways
of framing the players more carefully regarding their level of com-
petence and autonomy, e.g., "AI-augmentation improves strategic
decision-making abilities by 90%".

Lastly, the AI systems employed in our study were relatively
simple, missing advanced adaptive capabilities and were not de-
signed for strategic reasoning per se. Consequently, participants’
interactions with these systems may not reflect the potential of
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more sophisticated AI-augmented tools, limiting the scope of our
findings and highlighting the need for future research to incorpo-
rate cutting-edge, context-aware AI systems to better understand
their impact on human behaviour and collaboration.

8 CONCLUSION
To examine the impact of AI assistance on decision-making in eco-
nomic games, we conducted two between-subjects experimental
studies focused on the Trust Game and the Prisoner’s Dilemma.
Participants (N = 570) were randomly assigned to one of five exper-
imental conditions distributed across both games. Our findings re-
veal that asymmetric access to AI assistance influences individuals’
perceptions of their counterparts’ warmth and competence, even
when it does not directly alter cooperative or competitive behavior.
This suggests that, under the current experimental setup, the objec-
tive support provided by the AI may have been minimal, leading
participants to perceive the human as the primary decision-maker.
Future research should explore how stronger or more involved AI
assistance in multi-round economic games could further impact
both perception and behavior. These results highlight that even
minimal AI augmentation can shape interpersonal perceptions, un-
derscoring the importance of addressing the social implications of
unequal access to AI technologies. As AI systems become increas-
ingly integrated into daily life, understanding how disparities in
augmentation affect trust, collaboration, and competition is crucial.
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