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Fig. 1. In this work, we explore how the Fine Motor Control (FMC) assessed by the Nine Hole Peg Test (NHPT)

(A) can be linked to metrics during drawing on a digital surface with a stylus (B) and touch (C).

User interaction with digital systems requires Fine Motor Control (FMC), especially if the interfaces are
complex or require high fidelity and fine-grained interactions. Despite its importance, Fine Motor Control is
often overlooked in interactive system design, partly because of its complex assessment. Measuring changes
in fine motor abilities due to prolonged use or fatigue currently requires repeated manual testing. This paper
analyzes the concept of using the digital mobile devices’ input behavior to assess the user’s Fine Motor Control.
For this, we show that Fine Motor Control can be assessed for touch and stylus-based interaction with a
digital mobile system. We conducted a user study, where participants performed a Nine Hole Peg Test and a
predefined Copy Drawing Test before and after exercises that affect fine motor skills. Based on this data, we
investigated how metrics such as pressure, velocity, and entropy for touch and stylus input can be used to
predict Fine Motor Control.
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interaction (HCI).
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1 Introduction
From tying shoelaces to using a smartphone, many everyday activities require precise finger
movements, commonly known as Fine Motor Control (FMC). FMC therefore refers to the ability to
coordinate muscles, bones, and nerves to perform precise, small-scale movements1. Fine-grained
control over the limbs, particularly the hands and fingers, also significantly affects how effectively
and accurately users interact with interactive systems. Almost all input mechanisms require a
certain degree of finger and hand dexterity [57]. Whether using a desktop setup, where users rely
on precise mouse and keyboard actions [96], a smartphone touchscreen [9, 63, 107] that demands
accurate finger movements for tasks such as typing on small virtual keys, or Extended Reality (XR)
environments, which require precise three-dimensional input and manipulation of holograms [86],
FMC is essential to error-free and efficient interaction. When designing user input for digital mobile
systems, designers often assume a fixed level of FMC by users. However, fine motor skills are
significantly influenced by external factors such as diseases [15, 17, 20, 26, 26, 38, 46, 59, 75, 76, 108],
physical exercise, or nutrition [31, 100], and variation between individuals. Consequently, depending
on a user’s general or situational fine motor abilities, the same interface might be seen as less
effective.

This variability of FMC has significant implications: the design of interfaces may not be optimized
for fine motor skills because their quantification has received limited attention in HCI and the
outcomes of HCI experiments could be affected because fine motor skills are rarely measured,
unlike other factors such as task load [37] or user experience [52]. While researchers often collect
quantitative metrics such as error rates or task completion times, these measures are influenced by
many factors, such as learning effects, fatigue, boredom, or distractions, and do not specifically
isolate fine motor ability. As a result, changes in FMC over the course of an experiment may go
unnoticed, misattributed or accounted to random noise. Our method enables the explicit observation
of FMC and its fluctuations, offering a more targeted understanding of user input behavior and
capabilities. It can also serve as a baseline measure in studies requiring precise input, helping to
contextualize performance differences. For example, users with high FMC may complete complex
and high-fidelity tasksmore quickly andwith less effort, while users with reduced FMCmay struggle
despite otherwise comparable cognitive or experiential factors. Recognizing and accounting for this
variability is crucial for designing adaptive systems that respond effectively to individual motor
capabilities. Given its relevant role in user input, interactive systems must accommodate their
users’ movement limits and capabilities, ideally adapting to the unique abilities of the individual
in real time [57]. Achieving this level of dynamic adaptation requires the real-time recognition of
FMC. To integrate FMC-aware adaptations, we first need to investigate the feasibility of detecting
FMC directly on digital surfaces, such as tablets or smartphones.

Current approaches measuring FMC use special equipment, such as the widely used Nine Hole
Peg Test (NHPT) [60]. Although the NHPT is a standard method for assessing fine motor control, it
is also time-consuming [105] and requires specialized equipment and manual effort to conduct. To
address these limitations, we propose to use copy drawing tasks on a mobile device, which leverage

1https://medlineplus.gov/ency/article/002364.htm, last visit: 22-01-2025
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graphomotor skills, to predict NHPT completion time to gain insights in the FMC. Graphomotor
skills, such as drawing, tracing, and writing, are considered specialized fine motor skills from
a kinesiological perspective. These tasks involve coordinating visual and motor inputs, such as
eye-hand coordination, to perform precise movements [6], rendering drawing a promising method
for testing FMC. Copying drawing tasks could therefore be a practical and accessible substitute for
traditional tests, like the NHPT.
This paper compares the established NHPT with a copy drawing test for assessing fine motor

skills on a digital surface of a mobile device. In a user study, we observe different metrics, like
velocity and pressure, while drawing using the touch or stylus pen as input. Using physical exercises,
we endue a temporary change of FMC in individuals and observe the recovery using the NHPT
and our Fine Motor Control Copy Drawing Tests. This allows us to observe the influence of the
different levels of FMC on individuals’ input behavior. Using this, we propose metrics that can be
monitored to detect changes in FMC of the user.

2 Related Work
In this section, we summarize previous research in FMC, its relation to Physical Exercise (PE) and
assessment, as well as previous handwriting and drawing analysis.

2.1 FMC in HCI
Fine Motor Control refers to the targeted coordination of small muscle movements, typically
involving hands and fingers manipulating an object or system. It involves the complex interaction
between the nervous system and small muscle groups to perform precise tasks, such as writing,
buttoning clothes, or manipulating small objects [58]. Understanding and considering FMC is
especially relevant in HCI as it enables humans to precisely manipulate input devices like keyboards,
mice, touchscreens, and styluses, allowing for effective and efficient interaction with interactive
systems [5, 57, 98, 107].
For instance, Smith et al. [96] investigated changes in the FMC in elderly people. Their finding

indicated that older participants showed a decline in FMC, resulting in difficulty with controlling the
mouse. Changes in the FMC result in changes in the performance of user input in interactive systems,
highlighting the necessity to further investigate FMC in HCI for adaptation and prescreening of
user study participants. Similarly, Kong et al. [49] proposed the Ability-Based Design Mobile Toolkit.
The work showcases a toolkit for creating apps and being aware of the users’ abilities. Combining
detection and observation of human capabilities, like FMC or attention, enables the app to react to
changes. Our work supports this approach by investigating in FMC quantification and detection of
changes in such.
Another part of HCI research evolved around the accessibility of digital systems like touch

screens [9, 63]. As previously mentioned, people with FMC impairment struggle with precise and
fast input. For instance, Mott et al. [63] build a system called SmartTouch, to cope with non-regular
touch input. Their work explored how people with impaired FMC interact with a digital surface
and propose a way to allow relatively high precision input still.
Combining these works, we summarize that FMC plays a non-negligible role for user input.

This underlines the necessity to put more effort into investigating ways to detect and quantify
differences in FMC for future interactive systems, especially when talking about XR environments,
which shows a correlation between FMC in the real and virtual world, and HCI user studies.

2.2 Assessments, Tests, and Changes of Fine Motor Control
Previous research has shown that FMC can be learned and trained, especially at a young age [6, 7, 43].
Previous research further showed a beneficial influence of physical exercise in children on fine
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motor control [6, 16, 77, 115], as well as in adults [45, 80, 101]. While there is considerable research
highlighting the benefits for cognitive performance when doing Physical Exercise [14, 39, 92, 111],
it also shows positive effects for motor performance [40] and motor learning [36, 41, 104]. Reasons
for the improvement of FMC when doing regular Physical Exercise can be found in factors like an
increased blood flow in the motor cortex [113], increased activity in the sensorimotor network [110],
a larger basal ganglia volume [64, 66], increased the size of the hippocampus [4, 32, 67], and greater
white matter volume [88]. All these systems are involved in forming the FMC of individuals.

To assess FMC, researchers came up with various approaches and tools. Most of them rely
on manipulating small objects by the proband’s hand. Example tests are the NHPT, the Purdue
Pegboard Test (PPT), the Minnesota Manual Dexterity Test (MMDT) [94], or a pinch-test designed
by Pradhan et al. [74]. Both tests rely on participants grabbing small objects and placing or stacking
them in predefined places, like holes or pins. This work will use the NHPT by Mathiowetz et al. [60].
A standardized, quick, and widely used assessment tool to measure individuals’ finger dexterity
and fine motor skills. This task provides valuable data on hand function, coordination, and fine
motor control. It is commonly used in clinical settings to evaluate patients with conditions such as
stroke [15, 38], Alzheimer’s [17, 26], Parkinson [20, 26, 75, 76], or Multiple Sclerosis [46]. The NHPT
was also adopted in a Virtual Reality environment using a portable haptic device [21], enabling the
collection of additional analysis metrics while conducting the test.
While these tests were proven to test the FMC, they require special hardware and manual

assessment and can be,with completion times over a minute not including the setup time, very
time-consuming to conduct [105]. With our work, we explore how interactive systems can assess
and rank the users’ FMC using data from the user input.

2.3 Handwriting and Drawing Analysis
Using Computers to analyze and extract information and properties about the writer using hand-
writing or drawing has been extensively researched in the past and is still relevant in today’s
context. The research not only explored methods to detect what the user has written using Optical
Character Recognition (OCR) [22, 65, 102] and Handwritten Text Recognition (HTR) [3, 68], but
also looked into techniques to reveal the writer’s personality, psychological state, or behavior
through graphology [70, 84], writer identification [23], and even detecting diseases.

Diseases and Disorders As an example, researchers found an influence of Alzheimer’s disease
on handwriting [10, 30]. They could detect the early stages of Alzheimer’s using simple drawing
and writing tasks. Recently, research also found a strong correlation between Attention Deficit
Hyperactivity Disorder (ADHD) and the individual’s handwriting [13, 51, 79]. Shin et al. present a
way to detect Attention Deficit Hyperactivity Disorder (ADHD) in children using simple scribble
and drawing tasks, designed to be accessible even to participants unable to write conventional
words [61, 91].

Fatigue and Exertion Previous research not only investigated understanding the biomechanics
of writing and the associated fatigue, pain, and exertion during writing [8, 50] but also used hand-
writing as a tool to observe exertion [28, 83, 87]. Garnacho-Castaño et al. observed the correlation
of handwriting and drawing and fatigue responses of the body after physical activities [28]. They
observed that the handwriting analysis showed noticeable differences in handwriting performance
even after the muscles recovered from physical exertion, as indicated by lactate concentration.
This work shows that drawing tasks can be used to investigate fatigue and exertion. Recently,
Sesa-Nogueras et al. further investigated the connection between handwriting and fatigue [87].
Their work examines how physical fatigue affects the performance of signature and text-based
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biometric recognition methods. In the study, they found that fatigue negatively impacts signature-
based recognition. However, it has little effect on text-based recognition if long sequences are used.
While these studies provide valuable insights into fatigue-detection, our work focuses on a dif-
ferent but related construct of FMC. Unlike fatigue, which refers to the strain experienced from
prolonged use, for example, FMC concerns the precision and coordination of small movements,
such as accurately manipulating or moving. Although fatigue can influence FMC, the two are
conceptually distinct and require independent investigation. By studying FMC in the context of
smartphone-based tasks, we contribute new understanding of how to detect and quantify FMC
on smartphones, which has direct implications for the design of accessible and adaptive mobile
interfaces.

Fine Motor Control Cohen et al. [11, 12] explored using copy and tracing tasks to assess the
development of Fine Motor Control in elementary school children. In a user study, children were
tasked to copy and trace a circle using a graphic tablet. Their work shows the applicability of
both tasks to evaluate FMC in a rapid, economical, and non-invasive way, aligning with previous
work [29, 97, 103, 112]. While previous research has shown the value of drawing- and graphic
tablet tasks, our method enables a more intuitive and natural interaction by allowing, for instance,
free hand and arm placement [29] and does not require specialized hardware [97, 112] compared
to previous work, making it well-suited for use in everyday environments. The advancements in
technology allow us to use stock hardware compared to previous work having to use specialized
tools and hardware to assess stylus data, like pen-tip pressure, required for the analysis [97, 112].
Especially circular patterns, like spirals, circles, or loops, were used to test FMC [53, 78]. These
patterns test the individual through simple and repetitive movements [58]. They do not impose other
strains on the subject, like a heavy cognitive load, because the drawings are simple, straightforward,
and easy to memorize at a glance. However, they require good motor control in order to fulfill
them[28].

2.4 Summary
Handwriting and drawing tasks have proven to be valuable tools for assessing various aspects like
psychological states, health conditions, and FMC. These tasks are effective in testing FMC, as they
require precise and controlled movements. This renders them a good candidate for evaluating fine
motor skills. Simple patterns like spirals, circles, or loops demand minimal cognitive effort while
still challenging motor abilities. Simple circular drawings make testing for FMC accessible and
straightforward. To provoke changes in the FMC, we opted for Physical Exercise. PEs are effective
in inducing both short- and long-term changes in FMC. This allows us to induce different states of
FMC capabilities in individuals in our study. This approach allowed us to observe how variations in
FMC affect participants’ ways of drawing and NHPT completion time. Ultimately, we can observe
changes in the subject’s input behavior and interaction with a digital system.

3 Methodology
Based on the analysis approaches of handwriting and drawing in previous work, we formed the
following hypothesis:

H: Drawing metrics can be used to predict Fine Motor Control assessed by the NHPT completion
time

To check our hypothesis, we conducted a data gathering study to obtain data pairs of NHPT
completion time and time series data of drawings. In addition to testing our hypothesis, we seek
insight into which features contribute to the prediction. For this part of the experiment, We
formulate the following research questions:
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RQ1 What features or feature combinations that can be extracted from drawing with a pen on
a digital surface best explain the FMC?
RQ2 What features or feature combinations that can be extracted from drawing with the finger
on a touch surface best explain the FMC?
RQ3 How do the best stylus and finger models compare in terms of their accuracy in prediction?

3.1 Study Design and Task
We conducted a within-subjects data gathering study, where participants had to complete the
NHPTand our copy drawing test, including drawing two shapes using touch and a stylus as input.
Participants conducted the tests before and after physical activity, inducing a change in the FMC.
Participants were asked to redo the two consecutive back-to-back tasks in swapped order for a
total of four times with a 1-minute rest in between each set of test sequences. The 1-minute break
was chosen based on related work [28] and facilitated time for the central nervous system and
FMC to recover from the physical exercise exposure. The order of the copy drawing tests were
randomized for all trials, shuffling input type (stylus or pen), and drawing (Archimedes Spiral
or Loops). We opted for a counterbalanced approach for the NHPT and the copy drawing test to
avoid carry-over effects, like testing fatigue, between the two tests. Switching the order grants no
advantage for one test to be always carried out first.

Nine Hole Peg Test. The NHPT is an assessment tool to measure fine motor skills in individuals. We
3D printed a NHPT with the measures established by Mathiowetz et al. [60]. The board consists
of nine evenly spread holes with 3.2cm center distance apart, 0.71cm diameter, and 1.3cm depth.
The pegs have a diameter of 0.64cm and a length of 3.2cm. A peg tray was fitted on one side of
the board to hold all nine pegs, see Figure 3. For further details on how to conduct the NHPT test,
please see subsection 3.5.

CopyDrawing Test. Wedesigned two copy drawing tests based on relatedwork [25, 28, 117]. The user
is tasked to copy a predefined shape using the touch screen and a stylus [23, 91]. Participants were
asked to copy the displayed task template. We did not enforce a certain drawing style, as changes
in speed and accuracy could be indicative for changes in the FMC. Therefore, participants were
tasked to copy the template in a style they deemed necessary. Both tests required the performance
of five repetitive movements. The Loops have five loops with leading and trailing ends, while the
Archimedes Spiral has five circles with a trailing end, balancing the trade-off between required
drawing space and repetition count. This information was communicated in the familiarization set.
While the shapes seem simple, they involve repetitive patterns requiring accurate hand movement
to draw them perfectly. We opted for the Archimedes Spiral and Loops, see Figure 2, to test our
participant’s FMC [28, 55]. The Archimedes Spiral task specifically challenges fine motor skills by
requiring the participant to gradually increase the size of the circular movement to produce spirals
without overlapping previously drawn lines. On the contrary, the Loops drawing task demands
consistent rhythm and pattern throughout the drawing process. We further included a stylus in
addition to touch input to reassemble a tool-based input and to gain insights about the user’s
exerted pressure on the digital surface.

3.2 Predictors
While related work proposes manymetrics suitable for drawing- and writing tasks [28], we excluded
metrics unsuitable for our study or not replicable. For instance, prior work proposes to measure
the time in air. However, this metric is only suitable for figures and drawings that cannot be
drawn using one continuous stroke, like our tasks, see Figure 2. For the analysis, we calculated
key metrics for each time series data like maximum, standard deviation, and entropy, based on

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 5, Article MHCI012. Publication date: September 2025.



From Pegs to Pixels MHCI012:7

Fig. 2. The two drawing tasks from left to right: The two Fine Motor Control Tasks Loops, Archimedes

Spiral.

related work [28]. Entropy is often used in signal processing [89] and is a measure of the signal’s
uncertainty, randomness, or complexity. It is defined as follows:

𝐻 (𝑋 ) = −
𝑛∑︁
𝑖=1

𝑝𝑖 log2 𝑝𝑖

where 𝑛 = number of bins,

𝑝𝑖 =
count of data points in bin 𝑖

total number of data points
We recorded the following predictors:

Drawingtime Time elapsed between the first and last contact with the touchscreen using the
finger or stylus, measured in 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 . We included Drawingtime as a predictor due to its property
of being a task completion time. Because both our drawing test and the NHPT assess how long fine
motor tasks take, drawing time is a natural predictor.
Speed The velocity of the fingertip or stylus-tip on the screen, measured in 𝑝𝑖𝑥𝑒𝑙𝑠/𝑚𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑𝑠 .
Further we calculated Standard Deviation (stdev_speed), Maximum (max_speed), and Entropy
(entropy_speed). With these metrics, we can explore how fast and consistent the user moves the
fingertip or stylus across the 2D digital surface. The key metrics help us to see fast and consistent
the user moved. We suspect changes in the maximum speed and the overall consistency.
X Position Horizontal coordinate of the fingertip or stylus on the drawing pane, measured in
𝑝𝑖𝑥𝑒𝑙𝑠 . We calculated the Entropy (entropy_x).
Y Position Vertical coordinate of the fingertip or stylus on the drawing pane, measured in 𝑝𝑖𝑥𝑒𝑙𝑠 .
We calculated the Entropy (entropy_y).
Delta X Movement-offset in horizontal direction since the last recording of the fingertip’s or
stylus’ position, measured in 𝑝𝑖𝑥𝑒𝑙𝑠 . Further we calculated Standard Deviation (stdev_dx),Maximum
(max_dx), and Entropy (entropy_dx).
Delta Y Movement-offset in vertical direction since the last recording of the fingertip’s or stylus’
position, measured in 𝑝𝑖𝑥𝑒𝑙𝑠 . Further we calculated Standard Deviation (stdev_dy), Maximum
(max_dy), and Entropy (entropy_dy). Delta X and Delta Y allow us for a more in-depth analysis of
the Speed. These two predictors split the velocity into two axis movements, vertical and horizontal.
We suspect to find more information in Delta Y as the vertical based on the hypothesis that the
vertical motion is less uniform than horizontal motion, as our participants share the same cultural
horizontal left-to-right writing habits. This can lead to higher variability in vertical strokes, making
it a sensitive indicator of fine motor performance.
Pressure (stylus only) Pressure detected at the stylus’ tip. This predictor was only recorded
for the stylus condition. Further we calculated Standard Deviation (stdev_pressure), Maximum
(max_pressure), and Entropy (entropy_pressure). This metric directly reflects how controlled the
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Fig. 3. The Copy Drawing Task on the left, with the template to copy at the top. Right shows the 3D printed

NHPT.

user can move the stylus. Further, the key metrics quantify the unpredictability in how pressure is
applied. This is a key indicator of unstable or imprecise control often linked to reduced FMC [58].

3.3 Outcome
NHPT Completion Time The time needed to complete the NHPT.

3.4 Study Setup and Apparatus
To test our participants, we 3D printed a NHPT pegboard [60] using polylactide (PLA) filament,
see Figure 3, and developed a mobile app to guide the user through the copy drawing test. The 3D
printed parts and source code files can be found on GitHub 2.

The copy drawing test was conducted using an iPad (7. generation running iPadOS 16.5) with an
Apple Pencil (1. generation) as a stylus. The app, see Figure 3 for reference, was developed using
Flutter (Version 3.22.3). After accounting for the space taken up by the app bar and the drawing
template display, the app provides a drawable area of 810 x 788 pixels (28.58 x 27.8 cm of physical
drawing space). The touch and stylus input was sampled roughly every 16 milliseconds.

3.5 Procedure
After welcoming the participants, we introduced them to the experiment. If no objections were
raised against participation in the study, the subjects consented to participate by signing a formal
agreement and recording their demographics. Before conducting the baseline test for the NHPT
and our copy drawing test, participants could complete unrecorded trial runs to get used to the
tools and task, see Figure 4.

The NHPTwas presented and explained to the user, following the guidelines andmanual provided
by the National Multiple Sclerosis Society 3. To conduct the NHPT, the user sits at a table with
the pegboard in front of them. When given the start command, the user picks up the pegs, stored
in a compartment on the board, one at a time and places them in the holes as quickly as possible.
Users were instructed to move the pegs with their dominant hand while holding the board in place
with the other hand [116]. Once all pegs are placed, the user immediately removes them and places
them back in the compartment one at a time. If a peg falls on the table, the user is asked to pick it
up and continue the task as usual. If a peg instead falls on the ground, the user is asked to continue
the task while the study conductor collects the peg and places it at the last location. The test was
2https://github.com/Dominik-Schoen/FromPegsToPixels
3https://cdn.sanity.io/files/y936aps5/production/d52d1d7a55e52d10b09dcc39e47682ce2f735bb7.pdf?dl=, last visit 08-30-2024
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Fig. 4. Illustration of the experiment procedure. Participants started with a tutorial of both test to familiarize.

Afterwards they conducted their pre phyiscle exercise tests, followed by the physical intervention. After

reaching a predefined exertion, they conducted the tests again in swapped order with one minute break in

between.

repeated two times, as proposed by prior work [116] and the National Multiple Sclerosis Society 4,
and averaged. The total time taken to finish the task is recorded using a video to measure the time
from the first and last contact of the peg.

When all questions about the NHPT were answered, we presented the copy drawing test, where
participants could test drawing with their fingers and the stylus. Participants were instructed to
copy the template shape displayed at the top of the screen in the lower part of the screen. Size,
speed, and position on the drawing space could be freely chosen by the participant as they deemed
necessary. When no questions remained regarding both tests, the experiment started with the pre
physical exercise assessment. Depending on the Participant ID, they started with the NHPT or the
copy drawing test. When conducting the copy drawing test, we first enter the participant ID, and
present the participant the four tests. They were tasked to draw the Loops and Archimedes Spiral
two times each. One time, they use the touch as input, and one time, they use the stylus. The order
of these four tests were randomized for each trial.
After finishing both, the NHPT and the copy drawing test, participants were free to start their

workout routine. Participants were recruited in a local functional fitness gym. Surpassing the
threshold of seven on the Borg 10 scale, a subjective rating of exertion from 0 (no effort) to 10
(maximal effort), participants were asked to report to the study conductor. A value of seven indicates
severe physical exhaustion, but not to the point of reaching or even exceeding the individual’s
maximum capacity and risking harm. This marked the period for the post physical exercise tests.
Participants then redid the NHPT and the copy drawing test in swapped order. Completing the
second task, the study conductor started the one-minute cooldown for the second retest. Participants
redid this procedure a total of four times. Once the last two tests were conducted, we thanked the
participants for participating in the user study and answered any further questions about the user
study, if present.

3.6 Participants
We recruited eighteen participants (seven female, eight male, three preferred not to say) between 18
to 47 years (𝑥 = 32, 𝑠 = 7.39) through peer network at a local gym. All participants confirmed the
absence of musculoskeletal injuries or limitations of the arm and shoulder potentially influencing
FMC measurement.

4https://www.nationalmssociety.org/for-professionals/for-researchers/researcher-resources/research-tools/clinical-
study-measures/9-hpt, last visit 08-30-2024
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Participants voluntarily agreed to take part in the study and were free to withdraw from the
study at any time without a reason. The collected data can be viewed by the respective participant
at any time and deleted at request. Recorded data includes drawings, input time series, and NHPT
completion time. Videos used for measuring completion time were deleted after evaluation. No
additional media was recorded during the study to protect user privacy. Besides snacks and drinks,
no compensation was provided. Participants declared their willingness to participate in the user
study by signing an informed consent form.

3.7 Analysis
To analyze the data gathered during the acquisition user study, we used R (version 4.3.2), the
lmerTest package (version 3.1.3), and the MuMIn package (1.48.4) to fit Linear Mixed Effects Models.

4 The Impact of Physical Exercise on Fine Motor Control
As a prerequisite for fitting a model that can predict the NHPT time from the finger or stylus
movements during the copy drawing test, we need data pairs that were recorded under different
FMC levels. In the following section, we analyze whether our chosen approach of physical exercise
was effective in provoking different FMC capabilities. For this, we conduct a Linear Mixed Effects
Model to examine the effect of physical exercise on the NHPT completion time. The model includes
the four assessment times pre-PE, post-PE-1, post-PE-2, post-PE-3, and post-PE-4 as fixed effects, with
random intercepts by participant, resulting in the formula 𝑡𝑖𝑚𝑒 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 + (1|𝑝𝑖𝑑).
Model Fit and Variance Components The fit of the model was assessed using the REML crite-
rion, which is 892.1 for convergence. The scaled residuals ranged from -2.79 to 2.85, with the median
at -0.08, indicating a reasonable distribution of residuals around zero [85].

Random Effects The random effects, see Table 1, suggest variability in baseline NHPT completion
time across participants.

Fixed Effects The fixed effects, see Table 2, suggest an affection of assessment time and the
NHPT completion time. The NHPT completion time before the physical exercise (pre-PE) differs
significantly from all post physical exercises (post-PE-1, post-PE-2, post-PE-3, and post-PE-4). The
estimates reveal a decrease in the completion time after physical intervention. Interestingly, this
trend continues throughout all post-PE assessments, see subsection 6.3.

Group Effect Variance Std. Dev.
participant Intercept 1.03 1.01
Residual - 0.80 0.89

Table 1. Random Effects Summary for physical

exercise intervention

Effect Estimate SE df t p
pre-PE (Intercept) 17.46 0.30 19.79 63.10 < .001
post-PE-1 -0.92 0.16 300.00 -5.85 < .001
post-PE-2 -1.35 0.16 300.00 -8.54 < .001
post-PE-3 -1.49 0.16 300.00 -9.44 < .001
post-PE-4 -1.76 0.16 300.00 -11.17 < .001

Table 2. Fixed Effects Summary for pre-PE, post-PE-1, post-
PE-2, post-PE-3, and post-PE-4. (PE = Physical Exercise)

Effect Sizes We observed the following 𝑅2
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙

= 0.17, the proportion of variance explained by
our fixed factor (time assessment), and 𝑅2

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
= 0.64, the proportion of variance explained by

both the fixed and random factors (Participant ID).

Conclusion The analysis reveal a significant impact on the FMC induced by physical exercise.
The intervention decreased the task completion time of the NHPT. Further, the high discrepancy
between the 𝑅2

𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙
and 𝑅2

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
reveal a strong influence of the random factor Participant
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ID, revealing a personal influence of individuals on the time as well. With this finding, we can
confirm changes in the FMC after being exposed to physical exercise and explore the influence
on the NHPT and drawing metrics in the following chapters. Please refer to subsection 6.3 for a
more in-depth discussion and Appendix A for individual plots of the NHPT completion times of
our participants.

5 Multiple Regression to Predict NHPT Completion Time
We conducted amultiple regression to reveal the correlation between the NHPT completion time and
the different drawing metrics. We split the analysis for touch and stylus input, as different predictors
are available. With this analysis, we aim to create a minimum set of predictors for the linear model.
Adhering to Occam’s razor, which favors simpler models with equivalent generalization error [18],
we streamline the model using correlation-based feature selection [35] and by removing non-
significant predictors. Reducing the feature set benefits machine learning by minimizing noise [27].
A good predictor subset includes features that are highly correlated with the prediction (e.g., NHPT
Completion Time) but not with each other [35].

For the first simplification using correlation-based feature selection , we calculate a correlation
table and eliminate predictors that correlate. With this approach, we get the first subset of predictors
to create a base linear mixed effects model. For the second simplification using predictor elimination,
we analyze the fixed effects and identify contributors with weak contribution-power. Ultimately,
we compare both models to investigate the information loss after refinement.

5.1 Stylus Input
5.1.1 Stylus Base Model. We checked the predictors’ correlation using a correlation Table 3.
Strongly correlating predictors with 𝑟 > |0.700| were considered multicollinear and excluded.
We identified max_speed, entropy_speed, stdev_dx, max_dx, entropy_dx, max_dy, and entropy_dy
to be strongly correlated to stdev_speed. We, therefore, excluded those seven predictors. Further,
stdev_pressure was found to be multicollinear to max_pressure, and entropy_pressure. Additionally,
max_pressure, and entropy_pressure were strongly correlating aswell. We removed stdev_pressure
and max_pressure, as entropy_pressure facilitates the highest correlation with the outcome, NHPT
Time. Lastly, we identified a strong correlation between entropy_x and entropy_y. We removed
entropy_x, as entropy_y has a stronger correlation to NHPT Time.
Beyond the multicollinearity check, our predictor selection was guided by FMC theory and

related work [28]. Drawingtime was included as both our drawing task and the NHPT measure task
completion time, making it a conceptually aligned predictor. entropy_pressure and stdev_speed reflect
unpredictability and variability in pressure and movement across the digital surface, capturing
imprecise motor control commonly linked to reduced FMC [58]. entropy_y and stdev_dy further
refine this by specifically focusing on vertical movement. We hypothesis that vertical motion
is less uniform than horizontal motion, as our participants share the same cultural horizontal
left-to-right writing habits. This can lead to higher variability in vertical strokes, making it a
sensitive indicator of fine motor performance. For further discussion of predictor relevance and
interpretation, see subsection 6.1.
Based on the reduced set of predictors, we formulate the following linear mixed effects model:

𝑡𝑖𝑚𝑒 ∼ 𝑑𝑟𝑎𝑤𝑖𝑛𝑔𝑡𝑖𝑚𝑒+𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑦+𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒+𝑠𝑡𝑑𝑒𝑣_𝑠𝑝𝑒𝑒𝑑+𝑠𝑡𝑑𝑒𝑣_𝑑𝑦. Since we observed a
high personal effect in section 4, we included a random intercept for the participant id (pid), resulting
in: 𝑡𝑖𝑚𝑒 ∼ 𝑑𝑟𝑎𝑤𝑖𝑛𝑔𝑡𝑖𝑚𝑒 + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑦 + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + 𝑠𝑡𝑑𝑒𝑣_𝑠𝑝𝑒𝑒𝑑 + 𝑠𝑡𝑑𝑒𝑣_𝑑𝑦 + (1|𝑝𝑖𝑑).
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Speed Pressure DX DY
time drawingtime stdev max entropy stdev max entropy stdev max entropy stdev max entropy entropy x entropy y

time 1.000 0.221 0.101 0.067 0.135 0.057 0.026 0.105 0.103 0.076 0.137 0.038 0.006 0.051 0.106 0.119
drawingtime 0.221 1.000 0.330 0.281 0.280 0.029 0.053 0.003 0.263 0.314 0.238 0.468 0.343 0.455 0.575 0.493
stdev_speed 0.101 0.330 1.000 0.743 0.920 0.381 0.368 0.392 0.948 0.932 0.878 0.683 0.773 0.720 0.123 0.196
max_speed 0.067 0.281 0.743 1.000 0.486 0.042 0.070 0.053 0.525 0.674 0.449 0.466 0.462 0.448 0.149 0.016
entropy_speed 0.135 0.280 0.920 0.486 1.000 0.492 0.459 0.504 0.971 0.867 0.983 0.674 0.788 0.772 0.006 0.331
stdev_pressure 0.057 0.029 0.381 0.042 0.492 1.000 0.948 0.950 0.482 0.391 0.492 0.431 0.513 0.449 0.085 0.246
max_pressure 0.026 0.053 0.368 0.070 0.459 0.948 1.000 0.895 0.456 0.368 0.455 0.445 0.521 0.448 0.089 0.249
entropy_pressure 0.105 0.003 0.392 0.053 0.504 0.950 0.895 1.000 0.492 0.399 0.507 0.405 0.484 0.423 0.095 0.273
stdev_dx 0.103 0.263 0.948 0.525 0.971 0.482 0.456 0.492 1.000 0.905 0.945 0.668 0.803 0.738 0.004 0.327
max_dx 0.076 0.314 0.932 0.674 0.867 0.391 0.368 0.399 0.905 1.000 0.827 0.698 0.769 0.731 0.106 0.206
entropy_dx 0.137 0.238 0.878 0.449 0.983 0.492 0.455 0.507 0.945 0.827 1.000 0.624 0.761 0.760 0.067 0.404
stdev_dy 0.038 0.468 0.683 0.466 0.674 0.431 0.445 0.405 0.668 0.698 0.624 1.000 0.899 0.917 0.082 0.131
max_dy 0.006 0.343 0.773 0.462 0.788 0.513 0.521 0.484 0.803 0.769 0.761 0.899 1.000 0.888 0.015 0.301
entropy_dy 0.051 0.455 0.720 0.448 0.772 0.449 0.448 0.423 0.738 0.731 0.760 0.917 0.888 1.000 0.023 0.281
entropy_x 0.106 0.575 0.123 0.149 0.006 0.085 0.089 0.095 0.004 0.106 0.067 0.082 0.015 0.023 1.000 0.811
entropy_y 0.119 0.493 0.196 0.016 0.331 0.246 0.249 0.273 0.327 0.206 0.404 0.131 0.301 0.281 0.811 1.000

Table 3. Rounded correlation values between different predictors (values > 0.7 are bold) for stylus input

Model Fit and Variance Components The model fit was evaluated using the REML criterion,
being 521.9 at convergence. The scaled residuals ranged from -2.24 to 2.73, with the median at -0.17,
indicating a reasonable distribution of residuals around zero.

Random Effects The Random Effects, see Table 4, suggest variability in baseline NHPT completion
time across participants. We further report the Unadjusted ICC = 0.415 and Adjusted ICC = 0.448.
This highlights that about 44.8% of the variance is attributable to participant differences.

Fixed Effects The Fixed Effects, see Table 5, suggest the significance affection of drawingtime and
the NHPT completion time. Further, entropy_pressure should also be highlighted, being close to
significant. We, therefore, consider this variable to be kept in the model in further refinements and
simplifications.

Group Effect Variance Std. Dev.
participant Intercept 0.95 0.97
Residual - 1.17 1.08

Table 4. Random Effects Summary for Stylus

Base Model.

Effect Estimate SE df t p
(Intercept) 15.47 1.56 153.99 9.92 < .001
drawingtime 0.13 0.05 143.73 2.313 < .05
entropy_y -0.14 0.28 154 -0.5 0.62
entropy_pressure 0.41 0.28 131.17 1.94 0.0544
stdev_speed -0.47 0.38 154 -1.23 0.22
stdev_dy 0.03 0.03 153.5 0.94 0.35
Table 5. Fixed Effects Summary for Stylus Base Model.

Effect Sizes We observed the following 𝑅2
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙

= 0.07 and 𝑅2
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

= 0.49.

Conclusion The proposed linear mixed effects model successfully identifies drawingtime as a
significant predictor of NHPT completion time and accounts for subject-level variability, but it does
not effectively utilize other predictors. Again, the effect sizes reveal a strong personal influence of
individuals on the time as well.

5.1.2 Refined Stylus Base Model. Since the Stylus Base Model, see subsubsection 5.1.1, includes
lots of predictors not significantly contributing to the prediction of the NHPT completion time, we
further fitted a simplified model, just utilizing the drawingtime and entropy_pressure to compare
this even more simplified model, resulting in: 𝑡𝑖𝑚𝑒 ∼ 𝑑𝑟𝑎𝑤𝑖𝑛𝑔𝑡𝑖𝑚𝑒 + 𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 + (1|𝑝𝑖𝑑).
Model Fit and Variance Components The model fit was evaluated using the REML criterion,
being 518.3 at convergence. The scaled residuals ranged from -2.34 to 2.63, with the median at -0.13,
indicating a reasonable distribution of residuals around zero.
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Random Effects The Random Effects, see Table 6, suggest variability in baseline NHPT completion
time across participants. We further report the Unadjusted ICC = 0.419 and Adjusted ICC = 0.443.
This highlights that about 44.3% of the variance is attributable to participant differences.

Fixed Effects The Fixed Effects, see Table 7, suggest the significance affection of drawingtime and
the NHPT completion time. However, entropy_pressure does not seem to significantly contribute to
the model.

Group Effect Variance Std. Dev.
participant Intercept 0.93 0.97
Residual - 1.17 1.08

Table 6. Random Effects Summary for Refined

Stylus Base Model.

Effect Estimate SE df t p
(Intercept) 14.94 0.65 97.49 22.81 < .001
drawingtime 0.10 0.04 155.92 2.56 < .05
entropy_pressure 0.32 0.19 127.74 1.63 0.11

Table 7. Fixed Effects Summary for Refined Stylus Base

Model.

Effect Sizes We observed the following 𝑅2
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙

= 0.05 and 𝑅2
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

= 0.47.

Conclusion The proposed linear mixed effects model again identifies drawingtime as a significant
predictor of the NHPT completion time. However, entropy_pressure does not seem to improve the
model in a significant way.

5.1.3 Comparing Stylus Base Model and Refined Stylus Base Model. We compared both models
from above using an ANOVA, see Table 8. The results indicate that the more complex Stylus Base
Model is not significantly better than the Refined Stylus Base Model. This can also be observed when
comparing the model’s prediction of the NHPT completion time with the actual measured one,
see Figure 5. Please refer to subsection 6.1 for further discussion.

Model AIC BIC logLik deviance Chisq Df p

Refined Stylus Base Model 521.30 536.67 -255.65 511.30
Stylus Base Model 524.54 549.14 -254.27 508.54 2.7607 3 0.43

Table 8. ANOVA comparing Comparing Stylus Base Model and Refined Stylus Base Model

5.2 Touch Input
5.2.1 Touch Base Model. We followed the same process we used to analyze the stylus input for the
touch input. To do so, we checked the predictors’ correlation using a correlation Table 9. Strongly
correlating predictors with 𝑟 > |0.700| were considered multicollinear and excluded. we identified
stdev_dx, max_dx, entropy_dx, max_dy, entropy_dy to strongly correlate with entropy_speed and
stdev_speed. We removed all five predictors because of their multicollinearity. Further, we removed
stdev_speed because it strongly correlates with entropy_speed but has a worse correlation with
NHPT time compared to entropy_speed. Finally, we removed entropy_x because of the correlation
with entropy_y. Entropy_x had a higher correlation with NHPT Time rendering it a better predictor.

Similar to the Stylus Base Model we performed a multicollinearity check and the FMC theory to
find the most relevant predictors. Again, we included the Drawingtime as a predictor, as well as key
metrics of speed and vertical screen movement (y). For further discussion of predictor relevance
and interpretation, see subsection 6.1.
Based on the reduced set of predictors after the multicollinearity check, we formulate the

following linear mixed effects model: 𝑡𝑖𝑚𝑒 ∼ 𝑑𝑟𝑎𝑤𝑖𝑛𝑔𝑡𝑖𝑚𝑒+𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑦+𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑠𝑝𝑒𝑒𝑑+𝑠𝑡𝑑𝑒𝑣_𝑑𝑦+
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Fig. 5. Graphs comparing the predicted values to the observed values for the NHPT completion time. The red

line shows the linear reference line, while the blue one shows a linear regression of the predictions, with the

grey area depicting the confidence interval. Left graph shows the Base Stylus Model, the right one shows the
Refined Base Stylus Model.

𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 . Since we observed a high personal effect in section 4, we included the participant id
(pid) as a random effect, resulting in: 𝑡𝑖𝑚𝑒 ∼ 𝑑𝑟𝑎𝑤𝑖𝑛𝑔𝑡𝑖𝑚𝑒+𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑦+𝑒𝑛𝑡𝑟𝑜𝑝𝑦_𝑠𝑝𝑒𝑒𝑑+𝑠𝑡𝑑𝑒𝑣_𝑑𝑦+
𝑚𝑎𝑥_𝑠𝑝𝑒𝑒𝑑 + (1|𝑝𝑖𝑑).

Speed DX DY
NHPT Time drawing stdev max entropy stdev max entropy stdev max entropy entropy x entropy y

NHPT Time 1.000 0.168 0.071 0.032 0.097 0.066 0.060 0.099 0.037 0.062 0.036 0.037 0.097
drawingtime 0.168 1.000 0.249 0.348 0.236 0.215 0.272 0.195 0.458 0.334 0.363 0.588 0.521
stdev_speed 0.071 0.249 1.000 0.619 0.971 0.994 0.856 0.942 0.678 0.743 0.768 0.033 0.241
max_speed 0.032 0.348 0.619 1.000 0.531 0.547 0.872 0.483 0.524 0.513 0.507 0.191 0.136
entropy_speed 0.097 0.236 0.971 0.531 1.000 0.974 0.793 0.988 0.673 0.749 0.798 0.080 0.314
stdev_dx 0.066 0.215 0.994 0.547 0.974 1.000 0.815 0.953 0.655 0.730 0.759 0.084 0.297
max_dx 0.060 0.272 0.856 0.872 0.793 0.815 1.000 0.761 0.606 0.666 0.665 0.027 0.094
entropy_dx 0.099 0.195 0.942 0.483 0.988 0.953 0.761 1.000 0.634 0.722 0.787 0.145 0.382
stdev_dy 0.037 0.458 0.678 0.524 0.673 0.655 0.606 0.634 1.000 0.863 0.909 0.184 0.006
max_dy 0.062 0.334 0.743 0.513 0.749 0.730 0.666 0.722 0.863 1.000 0.877 0.047 0.158
entropy_dy 0.036 0.363 0.768 0.507 0.798 0.759 0.665 0.787 0.909 0.877 1.000 0.005 0.215
entropy_x 0.037 0.588 0.033 0.191 0.080 0.084 0.027 0.145 0.184 0.047 0.005 1.000 0.836
entropy_y 0.097 0.521 0.241 0.136 0.314 0.297 0.094 0.382 0.006 0.158 0.215 0.836 1.000

Table 9. Rounded correlation values between different predictors (values > 0.6 are bold) for touch

Model Fit and Variance Components The model fit was evaluated using the REML criterion,
being 530.6 at convergence. The scaled residuals ranged from -2.29 to 2.68, with the median at -0.14,
indicating a reasonable distribution of residuals around zero.

Random Effects The Random Effects, see Table 10, suggest variability in baseline NHPT comple-
tion time across participants. We further report the Unadjusted ICC = 0.419 and Adjusted ICC =

0.437. This highlights that about 43.7% of the variance is attributable to participant differences.

Fixed Effects The Fixed Effects, see Table 11, suggest the significance affection of drawingtime
and the NHPT completion time.

Effect Sizes We observed the following 𝑅2
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙

= 0.04 and 𝑅2
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

= 0.46.

Conclusion The proposed linear mixed effects model identifies drawingtime as a significant
predictor of NHPT completion time and accounts for subject-level variability. However, it does
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Group Effect Variance Std. Dev.
participant Intercept 0.95 0.97
Residual - 1.22 1.1

Table 10. Random Effects Summary for the

Touch Base Model.

Effect Estimate SE df t p
(Intercept) 15.93 1.88 153.2 8.5 < .001
drawingtime 0.13 0.06 145.53 2.16 < .05
entropy_y 0.03 0.33 152.76 0.1 0.92
entropy_speed -0.25 0.26 153.95 *0.94 0.92
stdev_dy 0.01 0.03 153.78 0.34 0.73
max_speed 0.04 0.07 151.8 0.51 0.61

Table 11. Fixed Effects Summary for the Touch Base

Model.

not effectively utilize other predictors. Again, the effect sizes reveal a strong personal influence of
individuals on the time as well.

5.2.2 Refined Touch Base Model. Since the Touch Base Model, see subsubsection 5.2.1, includes
lots of predictors not significantly contributing to the prediction of the NHPT completion time,
we further fitted another more simplified model, just utilizing the drawingtime to create this more
simplified model, resulting in: 𝑡𝑖𝑚𝑒 ∼ 𝑑𝑟𝑎𝑤𝑖𝑛𝑔𝑡𝑖𝑚𝑒 + (1|𝑝𝑖𝑑).
Model Fit and Variance Components The model fit was evaluated using the REML criterion,
being 521.3 at convergence. The scaled residuals ranged from -2.36 to 2.72, with the median at -0.16,
indicating a reasonable distribution of residuals around zero.

Random Effects The Random Effects, see Table 12, suggest variability in baseline NHPT comple-
tion time across participants. We further report the Unadjusted ICC = 0.426 and Adjusted ICC =

0.44. This highlights that about 44% of the variance is attributable to participant differences.

Fixed Effects The Fixed Effects, see Table 13, suggest the significance affection of drawingtime
and the NHPT completion time.

Group Effect Variance Std. Dev.
participant Intercept 0.94 0.97
Residual - 1.2 1.1

Table 12. Random Effects Summary for the Re-

fined Touch Base Model.

Effect Estimate SE df t p
(Intercept) 15.87 0.32 32.14 50.15 < .001
drawingtime 0.12 0.04 152.31 2.66 < .01

Table 13. Fixed Effects Summary for the Refined Touch

Base Model.

Effect Sizes We observed the following 𝑅2
𝑚𝑎𝑟𝑔𝑖𝑛𝑎𝑙

= 0.03 and 𝑅2
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

= 0.457.

Conclusion The proposed linear mixed effects model identifies drawingtime as a significant
predictor of NHPT completion time and accounts for subject-level variability.

5.2.3 Comparing Touch Base Model and Refined Touch Base Model. We compared both models
using an ANOVA, see Table 14. The results indicate that the more complex Touch Base Model is not
significantly better than the Refined Touch Base Model.

This can also be observed when comparing the model’s prediction of the NHPT completion time
with the actually measured one, see Figure 6. Please refer to subsection 6.1 for further discussion.

5.3 Interpreting the Multiple Regression
In this chapter, we will briefly interpret the most relevant findings of the previous chapter and put
them into perspective.
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Model AIC BIC logLik deviance Chisq Df p

Refined Touch Base Model 523.96 536.26 -257.98 515.96
Touch Base Model 530.56 555.16 -257.28 514.56 1.396 4 0.84

Table 14. ANOVA comparing Comparing Touch Base Model and Refined Touch Base Model
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Fig. 6. Graphs comparing the predicted values to the observed values for the NHPT completion time. The red

line shows the linear reference line, while the blue one shows a linear regression of the predictions, with the

grey area depicting the confidence interval. Left graph shows the Base Touch Model, the right one shows the
Refined Base Touch Model.

5.3.1 Performance of Individual Models. To interpret the performance and models, we first look at
the variance components of our models. These values represent the distribution of the residuals.
In other words, the distribution of the differences between the observed and predicted NHPT
completion time. Ideally, these should be symmetrically distributed around zero, which they roughly
are on all models we propose (Median scaled residual is between𝑀 = −0.17 and𝑀 = −0.13). This
suggests the model is not grossly skewed or misspecified when predicting. The models do not
constantly over- or underestimate the NHPT time.

Looking at the fixed effects of our models, we identified two predictors that strongly contribute
to the model fit, namely drawingtime and entropy pressure. For both input methods, touch and
stylus, the drawingtime had a significant influence. The estimates of drawingtime suggest for each
additional second of drawingtime an increase of 0.1 to 0.13 seconds on the NHPT completion time.
The longer users draw, the longer they need to finish the NHPT. For entropy of pressure, we found
that an increase of 1 results in an estimated increase of 0.32 to 0.41 seconds in the NHPT.
We evaluate the quality of our models in predicting NHPT completion time by comparing

predicted times to measured times. The median prediction error ranges from𝑀 = 0.65 to𝑀 = 0.7,
indicating an offset of about 0.65 to 0.7 seconds. With a median NHPT completion time of𝑀 = 16.12
seconds, an offset below 0.7 seconds is deemed good. For interpretation, the influence of the physical
exercise decreased the NHPT time by 0.92 to 1.76 seconds, see Table 2. Therefore, our models are
fine enough to distinguish the changes induced by physical exercise on the participants. To visualize
the prediction, we plotted each model’s predicted and actual time in Figure 5 and Figure 6. The
points represent each measurement, while the red line indicates the perfect prediction. Points
residing on this line indicate a perfect prediction by the model. The blue line is the linear regression
of all predictions of the respective model. The more similar these two lines, the better the overall
prediction capabilities of the model.
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5.3.2 Comparing Model Performances. To answer the question about the best model to predict the
NHPT completion time, we can state that the refined base models work the best. For stylus input, a
simple model using just drawingtime and entropy pressure works just as fine as the more complex
base model with three additional predictors. We base this decision on the 𝑅2

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
score (base

model: 0.49, refined base model: 0.47 ) and median error of the prediction (base model: 0.697, refined
base model: 0.69). For touch input, we observed the same behavior. The more simple refined base
model using just drawingtime as a predictor works as well as the more complex base model with
four additional predictors, based on 𝑅2

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
score (base model: 0.46, refined base model: 0.457 )

and median error of the prediction (base model: 0.67, refined base model: 0.65). While these 𝑅2 scores
seem quite low at first, they are actually reasonable. Since this work focuses on human factors and
the quantification of fine motor control, which in itself can not easily be measured, we expect quite
some variance. Working with humans always introduces some uncertainty. For this reason, some
research fields consider 𝑅2 > .1 as good [69]. Since our study explores a challenging-to-observe
phenomenon and represents a first attempt using this approach, we do not anticipate 𝑅2 scores
near one. In summary, our results indicate that understanding the user’s FMC using only a few key
metrics is feasible. The small set of predictors enables easy testing and integration in interactive
systems without excessive complexity.

Finally, we can state that the pressure entropy adds relevant information to increase the prediction
accuracy. To this end, the stylus model performs slightly better than the touch input and should be
preferred.

5.3.3 Model Bias and Personalization. The random effects of our models indicate variability in
the intercept, also called bias, across different participants. The model uses one common slope to
predict the outcome but uses a personalized intercept, also called bias. In other words, it is hard to
generalize a model for different people. The unadjusted ICC scores of around 0.41 to 0.43 confirm
the differences between participants. The ICC explains how much of the variation in the NHPT
time is due to differences between groups, here between participants, rather than just random noise.
Even after adjusting to factors (adjusted ICC) like covariates, fixed effects, and participants, about
43.7% to 44.3% of the variance is still attributable to participant differences.

6 Discussion
We showed that our models can quantify the FMC by predicting the NHPT completion time using
a copy drawing test on a digital surface using touch and stylus as input. This chapter will discuss
our findings and how they relate to previous research.

6.1 Drawing Time and Entropy of the Pressure Predict the Fine Motor Control
Based on related work [28], we started with an extensive list of fifteen potential predictors. Through
multicollinearity elimination, we ended up with only five predictors for each base model. This is
somewhat expected, as the key metrics for time series data can especially easily correlate as they
are based on the same source time series. For example, Speed and Delta x and Delta y are related.
Speed adds a relation to time. Therefore, it is expected that not all of the three predictors will be
required. Worth mentioning, however, is that Drawingtime is part of all models we created. When
refining the base models and eliminating predictors not strongly contributing to the prediction, we
end up with Drawingtime and for the stylus model, additionally with Entropy Pressure. The high
prediction contribution of Drawingtime can be explained by the models predicting a FMC test’s
task completion time [60]. Drawingtime itself being a FMC test’s task completion time [25, 28, 117].
Changes in the FMC should change both task completion times. We can observe this strong positive
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correlation when looking at the correlation table and fixed effects of our models. This renders the
Drawingtime the best single predictor for NHPT completion time.

Further, we found Entropy Pressure to be a strong predictor. The entropy expresses the randomness,
complexity, or unpredictability of a time series or signal. Therefore, Entropy Pressure reveals how
randomly or unpredictably a person applies pressure on the stylus [1] and to the digital surface.
Previous work linked this unsteadiness in pressure exertion to tremor under physical stress [1]. The
higher the entropy, the more random a signal appears. Our user study found that the more random
the signal, the longer the measured NHPT completion time and lowered FMC. People with lower
FMC show more randomness in how they press the stylus on the screen. This suggests they have
less control over steady muscle movements, leading to more unpredictable pressure. The definition
of FMC helps explain why pressure randomness is a good predictor. FMC involves the coordination
of the nervous system and small muscles to do precise tasks like writing, buttoning clothes, or
handling small objects [58]. In the case of the stylus input, a reduced FMC results in a bad, imprecise
pen manipulation. This phenomenon can not only be observed in the one-dimensional pressure
but also in the manipulation on the 2D digital surface, namely the speed. Both base models, for
stylus and touch input, include a key metric of speed. In the case of the stylus, the entropy speed,
and in the case of the touch, the standard deviation speed. Combining pressure and speed reflects
movement in a three-dimensional space on the digital surface. The speed expresses the horizontal
and vertical movement, while the pressure completes the third dimension. Therefore, our drawing
test and models can catch imprecision and fine changes in the movement of the hand, indicating a
potential reduced FMC on the digital surface.

6.2 Personalization Needed
The random effects in our models show variability in the intercept (bias) across participants,
indicating difficulty in generalizing the model. The ICC suggests that a significant portion of the
variation in NHPT time is due to participant differences rather than random noise, even after
adjusting for factors like covariates and fixed effects. The effect of differences between individuals
can be explained by the general underlying different FMC capabilities of each person based on
age [6, 7, 43], sex [60], or if and how often they do sports [93, 95]. Changes in the FMC, detected by
changes in the NHPT completion time, can also be detected by our approach. When just interested
in the changes of the FMC, you can use the proposed model out of the box. However, if you want to
quantify the true NHPT competition time and not just changes between tests, the model requires
an initial bias to offset the users’ differences. Therefore, the user needs to complete the NHPT under
normal circumstances, with no prior physical exercise for example. Once the bias is established,
combining the bias with our model, we are able to predict the true NHPT completion time as a
FMC assessment and not just changes of it.
Further, since the adjusted ICC is not close to 1, a substantial amount of variability still occurs

within each participant. In other words, there’s still a lot of variation in the measurements within the
same participant. While we understand what is considered to be FMC, the underlying mechanisms
and systems contributing to and building the actual FMC are very complex. Performing FMC
tasks requires the coordination of various muscles and nervous systems to plan, carry out, and
adjust movements. For example, moving a peg in the NHPT involves the motor cortex [2, 71],
cerebellum [19, 72], and basal ganglia [19, 34] to plan and execute the action. The spinal cord
links the nervous system to the arm and hand muscles, enabling the peg’s movement, while the
peripheral nervous system sends sensory feedback to handle unexpected changes, like a peg slipping.
Further many acute influences, like sleep [109], drugs [33, 82], or caffeine [42], also affect the FMC.
Combined with the previous finding, interpersonal differences exist, and intrapersonal differences
may occur based on the state and surroundings of the individual. The high variability within the
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participants can be explained by the sheer complexity of accessing FMC. Breaking the complex
process down into just a handful of metrics extracted while interacting with a digital surface is
insufficient to comprehend the FMC fully. But as we can see in Figure 6, Figure 5, and subsection 6.1,
utilizing multiple predictions is sufficient to unveil changes in the FMC. Future research should
consider different predictors or more complex models to improve the prediction further.

6.3 Increase in Fine Motor Skill After a Bout of Exercise
We included physical exercise in our study to induce short-term changes in FMC, as prior work
suggests. While our primary objective was not primarily to study the relationship in depth, we
observed contrary to expectations from related literature an increase of FMC instead of a decrease.
Previous research suggested that exposure to physical exercise has an influence on the individual’s
FMC and requires longer to recover from the exposure than muscles and their built-up lactate [28].
Their work indicates a recovery of the muscles after three minutes, while the recovery timer for
FMC remains indefinitely longer. With our testing procedure of four rounds of testing post-physical
exercise and a one-minute break in between, we observed participants’ recovery throughout a
five to seven-minute time interval after the exposure to physical exercise. We expected the NHPT
completion time to be slightly worse after the workout and drop back to or even deteriorate the
baseline after recovering, as proposed by related work [28].

However, as seen in section 4, participants had constantly lower NHPT completion time after their
exercise, indicating a higher FMC, compared to their baseline recording before working out. The fact
that our participants immediately and constantly performed better in the NHPT after the physical
intervention is surprising and unexpected. A possible explanation could be the neurochemical
processes involved when exercising and specifically training fine motor skills. Regular exercises
and fine motor skills exercises facilitate enhanced levels of hormones like dopamine, serotonin, and
norepinephrine [93, 95], which in turn might facilitate improved neuroplasticity, enabling the brain
to form new connections and help us acquire new skills [93]. However, neuroplasticity requires a
long time to show effect. But research not only showed the long-term effects of physical exercise
on fine motor control but also the influence of acute exposure on motor performance and learning
were explored [81, 99, 106]. Roig et al. [81], for example, showed that acute training shortly before
or after practicing fine motor skills significantly improved fine motor skills compared to a control
group without training. The effect could be observed after 1 hour, 24 hours, and even 7 days after
training.
While the observed improvement in FMC after physical exercise is noteworthy, we, as non-

domain matter experts, avoid making definitive claims about the underlying cause, as current
research offers conflicting explanations. In this work, our primary goal was to examine how
interaction with digital surfaces relates to NHPT completion time across different FMC levels. We
introduced a physical exercise intervention to induce a change in FMC. For our study, it is irrelevant
whether it was a positive or negative change. As shown in section 4, this intervention successfully
triggered measurable changes in participants’ FMC. Our models were able to capture these changes
and predict the corresponding NHPT completion times.

6.4 Using A FMC Mediator to Predict a FMC Mediator
As seen in our four predictor plots, Figure 5 and Figure 6, our models reach high accuracy, espe-
cially when using multiple measurements, supporting our overall hypothesisH. However, FMC
is challenging to measure directly as no device or tool is available to quantify it directly on the
human body. Instead, we rely on tests like the NHPT to get an estimate. However, these tests do
not directly measure FMC. They rather act as indicators or mediators. The time it takes to complete
these tests not only reflects a person’s FMC but also includes other factors and can be affected
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quite heavily by small mistakes. For instance, if a peg drops while picking up another one and
maybe even falls on the floor, the time spent retrieving and placing the peg counts towards the
total assessment time. Such a mistake can penalize the score quite strongly, although it might not
be caused by an equally strong failure of the FMC. Further, randomness can heavily influence the
test results, as dropping a peg will leave the peg at a random position. If lucky, the peg is close to
the test and does not have a huge impact. If not, the retrieval will add a huge penalty to the time.
While you could exclude such trials, the NHPT’s instruction set does not allow for such removals.

Our approach of using graphomotor skills can be seen as a FMC mediator, too. This test cannot
directly measure and quantify FMC but instead quantifies the result of a FMC test. By predicting
the NHPT completion time, we effectively predict a FMC mediator with a FMC mediator to check
the validity of using a copy drawing test to gain insights into the FMC. This paper showed that our
drawing test correlates with the NHPT, but we can not tell which of the tests quantifies the FMC
the best. As mentioned, the NHPT can react quite sensitively to minor mistakes, like dropping one
peg. Especially if this peg randomly falls on the ground. While such occurrences are rare in healthy
individuals [60], they can happen, rendering the result indicative. Our proposed copy drawing test
and detection on a digital surface do not suffer from such randomness factors, potentially rendering
them more stable than the NHPT.

7 Use Cases and Applicability
This section presents use cases to illustrate the applicability and necessity of assessing FMC through
digital surfaces for HCI.

7.1 Quantified Self and Personal Assessment
In recent years, self-tracking of health and fitness data, like heart rate, sleep or step count for
example, has gained significant popularity [24, 56]. Traditional assessment methods for FMC such
as the NHPT are unsuitable for this, as users would have to carry additional hardware with them. In
contrast to this, our approach, which uses simple touchscreen-based drawing copy test to quickly
evaluate FMC, aligns with this trend by offering an accessible, fast, and convenient method for
FMC assessment. Our method can be easily integrated into omnipresent devices like smartphones
or tablets.

7.2 HCI User Studies
We argue that assessing varying FMC levels in future HCI user studies is important since an
individual’s FMC can significantly influence how easily they interact with user interfaces and input
methods. From simple pointing tasks [90] to complex tracing or steering tasks [44], FMC plays a
crucial role to enable individuals fast and precise input. For one person, a system may feel intuitive
and effortless, while for another, it could be challenging to use. Also, temporary changes in the
FMC, through factors like hypoglycemia [31, 100] or acute exhaustion, can render a system hard to
control for individuals with a usually high FMC. Such differences can directly affect the perception
and evaluation of interactive systems. Our approach addresses this by enabling quick assessment
of FMC (especially compared to cumbersome assessment with NHPT).

7.3 Continuous Tracking
While our current implementation of FMC assessment relies on predefined sketches that users
replicate, the predictor of pressure entropy could potentially generalize to everyday touch and
stylus input. More specifically, an automated computation of FMC provides great potential for
continuously assessing repetitive inputs (e.g., lock screen patterns or swipe gestures on touch-based
keyboards) in the background. Such an approach would allow for monitoring changes throughout
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the day or a prolonged time by collecting regular data samples without requiring users to allocate
time for specific tests. Such background tracking could support applications like disease recovery
and rehabilitation (e.g., for stroke patients) and adaptive systems that could use this data to adjust
interfaces dynamically (e.g., by increasing the size of hidden touch zones in digital keyboards [47]
based on variations in FMC to increase typing accuracy).

8 Limitations and Future Work
We carried out a data-gathering experiment to investigate the correlation of different drawing
metrics on the NHPT completion time to measure the FMC. However, it is essential to note that the
outcomes found with a limited number of participants may not generalize to the entire population,
especially considering the WEIRD [54] sample in our experiment. The proposed models reveal
a difference between individuals, highlighting the interpersonal differences in FMC. Especially,
recruiting participants in a local gym results in people being used to physical exercise and potentially
having a better or more reactive FMC in general, compared to untrained people [40, 104]. Further,
we did not control the physical exercise our participants performed. All participants partook in the
same type of sport, functional fitness, but followed different workouts.

Besides these limitations, external factors, such as various physical characteristics, handedness,
or age-related changes to the musculoskeletal and central nervous system influencing the FMC,
need to be investigated.
Also, we have to acknowledge the need for sparse data sampling. We only recorded one pre

physical exercise data pair of NHPT and copy drawing test. Further, based on related work, we
did not expect the observed reaction of physical exercise on the participant’s FMC. We recom-
mend recording for longer after physical exercise exposure. Additionally, multiple days should be
considered to sample, as the FMC show intraperson changes, see subsection 6.2.

Closely related to this, we only sampled two different drawings based on previous work. In future
work, we want to further investigate more generalized input not requiring drawing predefined
shapes.
Related to this, we only observed improvements in the FMC compared to the baseline. Future

research should look into the deterioration of FMC, for instance, through alcohol intoxication [62].
Lastly, we acknowledge technical limitations in using the iPad for this study. iPadOS provides

only preprocessed touch and stylus input, likely including smoothing and filtering, with no access
to raw sensor data. This may introduce unmeasured jitter or latency. Nonetheless, our results show
that FMC prediction is possible using this processed data, demonstrating the robustness of our
approach. Importantly, our approach runs on unmodified, stock iPads—supporting its practicality
and ease of deployment. Future work could explore validating input fidelity, input latency, and
sensor noise more precisely on other platforms or devices where raw sensor access is available.

For future work, we investigate further into FMC assessment on digital surfaces. In this study, we
only captured the pressure exerted by the stylus. Most of the current touchscreens cannot measure
physical touch pressure [48]. They estimate it using touch area size. However, at the time of writing
this paper, iPads do not allow the recording of this value. Finally, the current touchscreens also
lack the resolution to capture small pressure changes potentially needed for predicting FMC.

9 Conclusion
In this paper, we compared the established NHPT to access FMC with a copy drawing test on a
mobile device. In a data-gathering study, we collected data pairs of NHPT completion times and
time series data of touch and stylus input while drawing on a digital surface. We fitted linear mixed
effects models for both input modalities and refined the model using correlation and fixed effects
analysis. We found robust prediction rates, highlighting the feasibility of using drawing as an
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alternative to assess FMC by predicting NHPT completion times. This enables FMC assessment
using just a mobile device, specifically a stock iPad without the need for dedicated hardware or
system modifications, and facilitates exciting opportunities for HCI by personalizing user interfaces
and input of digital systems based on the individual’s FMC. Further, it enables the exploration of
influences of different FMC capabilities - and, the other way around, the impact of systems on the
FMC - in HCI user studies. Additionally, following the use cases of the NHPT to detect diseases
like stroke [15, 38], Alzheimer’s [17, 26], or Parkinson [20, 26, 75, 76], Multiple Sclerosis [46], or
observe the development of children while growing up [73, 114], enable assessment of them using
commonly available hardware, like smartphones or tablets. Further explorations and investigations
could even promote this technique to be used live, as most observed metrics can be assessed during
an interaction and do not require performing and completing a predefined test.

Remarks
For the purpose of editing, we used GPT-4o, DeepL, and Grammarly.

Acknowledgments
This work is supported by the German Research Foundation (DFG), CRC 1404: “FONDA: Foun-
dations of Workflows for Large-Scale Scientific Data Analysis” (Project-ID 414984028). This work
has been co-funded by the LOEWE initiative (Hesse, Germany) within the emergenCITY center
[LOEWE/1/12/519/03/05.001(0016)/72].

References
[1] [n. d.]. The Influence of Tremor on Handwriting Performance under Conditions of Low and Intermediate Physical

Stress. ([n. d.]).
[2] 1994. Motor Areas of the Cerebral Cortex. Journal of Clinical Neurophysiology 11, 4 (July 1994), 392.
[3] May Mowaffaq Al-Taee, Sonia Ben Hassen Neji, and Mondher Frikha. 2020. Handwritten Recognition: A Survey.

In 2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS). 199–205. https:
//doi.org/10.1109/IPAS50080.2020.9334936

[4] Geneviève Albouy, Virginie Sterpenich, Evelyne Balteau, Gilles Vandewalle, Martin Desseilles, Thanh Dang-Vu,
Annabelle Darsaud, Perrine Ruby, Pierre-Hervé Luppi, Christian Degueldre, Philippe Peigneux, André Luxen, and
Pierre Maquet. 2008. Both the Hippocampus and Striatum Are Involved in Consolidation of Motor Sequence Memory.
Neuron 58, 2 (April 2008), 261–272. https://doi.org/10.1016/j.neuron.2008.02.008

[5] Caitlin Axford, Annette V. Joosten, and Courtenay Harris. 2018. iPad Applications That Required a Range of Motor
Skills Promoted Motor Coordination in Children Commencing Primary School. Australian Occupational Therapy
Journal 65, 2 (April 2018), 146–155. https://doi.org/10.1111/1440-1630.12450

[6] Danilo Bondi, Claudio Robazza, Christiane Lange-Küttner, and Tiziana Pietrangelo. 2022. Fine Motor Skills and
Motor Control Networking in Developmental Age. American Journal of Human Biology 34, 8 (Aug. 2022), e23758.
https://doi.org/10.1002/ajhb.23758

[7] Carol G. Brown. 2010. Improving Fine Motor Skills in Young Children: An Intervention Study. Educational Psychology
in Practice 26, 3 (Sept. 2010), 269–278. https://doi.org/10.1080/02667363.2010.495213

[8] Shao-Hsia Chang, Chien-Liang Chen, and Nan-Ying Yu. 2015. Biomechanical Analyses of Prolonged Handwriting in
Subjects with and without Perceived Discomfort. Human Movement Science 43 (Oct. 2015), 1–8. https://doi.org/10.
1016/j.humov.2015.06.008

[9] Karen B. Chen, Anne B. Savage, Amrish O. Chourasia, Douglas A. Wiegmann, and Mary E. Sesto. 2013. Touch Screen
Performance by Individuals with and without Motor Control Disabilities. Applied Ergonomics 44, 2 (March 2013),
297–302. https://doi.org/10.1016/j.apergo.2012.08.004

[10] Nicole D. Cilia, Giuseppe De Gregorio, Claudio De Stefano, Francesco Fontanella, Angelo Marcelli, and Antonio
Parziale. 2022. Diagnosing Alzheimer’s Disease from on-Line Handwriting: A Novel Dataset and Performance
Benchmarking. Engineering Applications of Artificial Intelligence 111 (May 2022), 104822. https://doi.org/10.1016/j.
engappai.2022.104822

[11] Erez James Cohen, Riccardo Bravi, Maria Angela Bagni, and Diego Minciacchi. 2018. Precision in Drawing and
Tracing Tasks: Different Measures for Different Aspects of Fine Motor Control. Human Movement Science 61 (Oct.
2018), 177–188. https://doi.org/10.1016/j.humov.2018.08.004

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 5, Article MHCI012. Publication date: September 2025.

https://doi.org/10.1109/IPAS50080.2020.9334936
https://doi.org/10.1109/IPAS50080.2020.9334936
https://doi.org/10.1016/j.neuron.2008.02.008
https://doi.org/10.1111/1440-1630.12450
https://doi.org/10.1002/ajhb.23758
https://doi.org/10.1080/02667363.2010.495213
https://doi.org/10.1016/j.humov.2015.06.008
https://doi.org/10.1016/j.humov.2015.06.008
https://doi.org/10.1016/j.apergo.2012.08.004
https://doi.org/10.1016/j.engappai.2022.104822
https://doi.org/10.1016/j.engappai.2022.104822
https://doi.org/10.1016/j.humov.2018.08.004


From Pegs to Pixels MHCI012:23

[12] Erez J. Cohen, Riccardo Bravi, and Diego Minciacchi. 2021. Assessing the Development of Fine Motor Control in
Elementary School Children Using Drawing and Tracing Tasks. Perceptual and Motor Skills 128, 2 (April 2021),
605–624. https://doi.org/10.1177/0031512521990358

[13] Rony Cohen, Batia Cohen-Kroitoru, Ayelet Halevy, Sharon Aharoni, Irena Aizenberg, and Avinoam Shuper. 2019.
Handwriting in Children with Attention Deficient Hyperactive Disorder: Role of Graphology. BMC Pediatrics 19, 1
(Dec. 2019), 484. https://doi.org/10.1186/s12887-019-1854-3

[14] Stanley Colcombe and Arthur F. Kramer. 2003. Fitness Effects on the Cognitive Function of Older Adults: A Meta-
Analytic Study. Psychological Science 14, 2 (March 2003), 125–130. https://doi.org/10.1111/1467-9280.t01-1-01430

[15] Earllaine Croarkin, Jerome Danoff, and Candice Barnes. 2004. Evidence-Based Rating of Upper-Extremity Motor
Function Tests Used for People Following a Stroke. Physical Therapy 84, 1 (Jan. 2004), 62–74. https://doi.org/10.1093/
ptj/84.1.62

[16] Laura C. Dapp, Venera Gashaj, and Claudia M. Roebers. 2021. Physical Activity and Motor Skills in Children: A
Differentiated Approach. Psychology of Sport and Exercise 54 (May 2021), 101916. https://doi.org/10.1016/j.psychsport.
2021.101916

[17] Jonas J. de Paula, Maicon R. Albuquerque, Guilherme M. Lage, Maria A. Bicalho, Marco A. Romano-Silva, and
Leandro F. Malloy-Diniz. 2016. Impairment of Fine Motor Dexterity in Mild Cognitive Impairment and Alzheimer’s
Disease Dementia: Association with Activities of Daily Living. Brazilian Journal of Psychiatry 38 (April 2016), 235–238.
https://doi.org/10.1590/1516-4446-2015-1874

[18] Pedro Domingos. 1999. The Role of Occam’s Razor in Knowledge Discovery. Data mining and knowledge discovery 3
(1999), 409–425.

[19] Kenji Doya. 2000. Complementary Roles of Basal Ganglia and Cerebellum in Learning and Motor Control. Current
Opinion in Neurobiology 10, 6 (Dec. 2000), 732–739. https://doi.org/10.1016/S0959-4388(00)00153-7

[20] Gammon M. Earhart, Jim T. Cavanaugh, Terry Ellis, Matt P. Ford, K. Bo Foreman, and Lee Dibble. 2011. The
9-Hole Peg Test of Upper Extremity Function: Average Values, Test-Retest Reliability, and Factors Contributing
to Performance in People With Parkinson Disease. Journal of Neurologic Physical Therapy 35, 4 (Dec. 2011), 157.
https://doi.org/10.1097/NPT.0b013e318235da08

[21] Christophe Emery, Evren Samur, Olivier Lambercy, Hannes Bleuler, and Roger Gassert. 2010. Haptic/VR Assessment
Tool for Fine Motor Control. In Haptics: Generating and Perceiving Tangible Sensations, Astrid M. L. Kappers, Jan B. F.
Van Erp, Wouter M. Bergmann Tiest, and Frans C. T. Van Der Helm (Eds.). Vol. 6192. Springer Berlin Heidelberg,
Berlin, Heidelberg, 186–193. https://doi.org/10.1007/978-3-642-14075-4_27

[22] Safiullah Faizullah, Muhammad Sohaib Ayub, Sajid Hussain, and Muhammad Asad Khan. 2023. A Survey of OCR
in Arabic Language: Applications, Techniques, and Challenges. Applied Sciences 13, 7 (Jan. 2023), 4584. https:
//doi.org/10.3390/app13074584

[23] Marcos Faundez-Zanuy, Jiri Mekyska, and Donato Impedovo. 2021. Online Handwriting, Signature and Touch
Dynamics: Tasks and Potential Applications in the Field of Security and Health. Cognitive Computation 13, 5 (Sept.
2021), 1406–1421. https://doi.org/10.1007/s12559-021-09938-2

[24] Shan Feng, Matti Mäntymäki, Amandeep Dhir, and Hannu Salmela. 2021. How Self-tracking and the Quantified Self
Promote Health and Well-being: Systematic Review. Journal of Medical Internet Research 23, 9 (Sept. 2021), e25171.
https://doi.org/10.2196/25171

[25] Marshal F. Folstein, Susan E. Folstein, and Paul R. McHugh. 1975. “Mini-mental State”. Journal of Psychiatric Research
12, 3 (Nov. 1975), 189–198. https://doi.org/10.1016/0022-3956(75)90026-6

[26] Nora E. Fritz, Deborah A. Kegelmeyer, Anne D. Kloos, Shannon Linder, Ariane Park, Maria Kataki, Anahita Adeli,
Punit Agrawal, Douglas W. Scharre, and Sandra K. Kostyk. 2016. Motor Performance Differentiates Individuals
with Lewy Body Dementia, Parkinson’s and Alzheimer’s Disease. Gait & Posture 50 (Oct. 2016), 1–7. https:
//doi.org/10.1016/j.gaitpost.2016.08.009

[27] Dragan Gamberger and Nada Lavrač. 1997. Conditions for Occam’s Razor Applicability and Noise Elimination. In
Machine Learning: ECML-97, Maarten van Someren and Gerhard Widmer (Eds.). Springer, Berlin, Heidelberg, 108–123.
https://doi.org/10.1007/3-540-62858-4_76

[28] Manuel-Vicente Garnacho-Castaño, Marcos Faundez-Zanuy, and Josep Lopez-Xarbau. 2020. On the Handwriting
Tasks’ Analysis to Detect Fatigue. Applied Sciences 10, 21 (Oct. 2020), 7630. https://doi.org/10.3390/app10217630

[29] Arthur Gatouillat, Antoine Dumortier, Subashan Perera, Youakim Badr, Claudine Gehin, and Ervin Sejdić. 2017.
Analysis of the Pen Pressure and Grip Force Signal during Basic Drawing Tasks: The Timing and Speed Changes
Impact Drawing Characteristics. Computers in Biology and Medicine 87 (Aug. 2017), 124–131. https://doi.org/10.1016/
j.compbiomed.2017.05.020

[30] Vincenzo Gattulli, Donato Impedovo, Giuseppe Pirlo, and Gianfranco Semeraro. [n. d.]. Handwriting Task-Selection
Based on the Analysis of Patterns in Classification Results on Alzheimer Dataset. ([n. d.]).

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 5, Article MHCI012. Publication date: September 2025.

https://doi.org/10.1177/0031512521990358
https://doi.org/10.1186/s12887-019-1854-3
https://doi.org/10.1111/1467-9280.t01-1-01430
https://doi.org/10.1093/ptj/84.1.62
https://doi.org/10.1093/ptj/84.1.62
https://doi.org/10.1016/j.psychsport.2021.101916
https://doi.org/10.1016/j.psychsport.2021.101916
https://doi.org/10.1590/1516-4446-2015-1874
https://doi.org/10.1016/S0959-4388(00)00153-7
https://doi.org/10.1097/NPT.0b013e318235da08
https://doi.org/10.1007/978-3-642-14075-4_27
https://doi.org/10.3390/app13074584
https://doi.org/10.3390/app13074584
https://doi.org/10.1007/s12559-021-09938-2
https://doi.org/10.2196/25171
https://doi.org/10.1016/0022-3956(75)90026-6
https://doi.org/10.1016/j.gaitpost.2016.08.009
https://doi.org/10.1016/j.gaitpost.2016.08.009
https://doi.org/10.1007/3-540-62858-4_76
https://doi.org/10.3390/app10217630
https://doi.org/10.1016/j.compbiomed.2017.05.020
https://doi.org/10.1016/j.compbiomed.2017.05.020


MHCI012:24 Schön, et al.

[31] J. Geddes, I. J. Deary, and B. M. Frier. 2008. Effects of Acute Insulin-Induced Hypoglycaemia on Psychomotor Function:
People with Type 1 Diabetes Are Less Affected than Non-Diabetic Adults. Diabetologia 51, 10 (Oct. 2008), 1814–1821.
https://doi.org/10.1007/s00125-008-1112-y

[32] Freja Gheysen, Filip Van Opstal, Chantal Roggeman, Hilde Van Waelvelde, and Wim Fias. 2010. Hippocampal
Contribution to Early and Later Stages of Implicit Motor Sequence Learning. Experimental Brain Research 202, 4 (May
2010), 795–807. https://doi.org/10.1007/s00221-010-2186-6

[33] David J. Goode, Alexander A. Manning, John F. Middleton, and Barry Williams. 1981. Fine Motor Performance before
and after Treatment in Schizophrenic and Schizoaffective Patients. Psychiatry Research 5, 3 (Dec. 1981), 247–255.
https://doi.org/10.1016/0165-1781(81)90071-8

[34] Henk J. Groenewegen. 2003. The Basal Ganglia and Motor Control. Neural Plasticity 10, 1-2 (2003), 108384. https:
//doi.org/10.1155/NP.2003.107

[35] Mark A Hall. 1999. Correlation-Based Feature Selection for Machine Learning. (1999).
[36] Ulrike Halsband and Regine K. Lange. 2006. Motor Learning in Man: A Review of Functional and Clinical Studies.

Journal of Physiology-Paris 99, 4 (June 2006), 414–424. https://doi.org/10.1016/j.jphysparis.2006.03.007
[37] Sandra G. Hart. 2006. Nasa-Task Load Index (NASA-TLX); 20 Years Later. Proceedings of the Human Factors and

Ergonomics Society Annual Meeting 50, 9 (2006), 904–908. https://doi.org/10.1177/154193120605000909
[38] A. Heller, D. T. Wade, V. A. Wood, A. Sunderland, R. L. Hewer, and E. Ward. 1987. Arm Function after Stroke:

Measurement and Recovery over the First Three Months. Journal of Neurology, Neurosurgery & Psychiatry 50, 6 (June
1987), 714–719. https://doi.org/10.1136/jnnp.50.6.714

[39] Charles H. Hillman, Kirk I. Erickson, and Arthur F. Kramer. 2008. Be Smart, Exercise Your Heart: Exercise Effects on
Brain and Cognition. Nature Reviews Neuroscience 9, 1 (Jan. 2008), 58–65. https://doi.org/10.1038/nrn2298

[40] Benjamin Holfelder and Nadja Schott. 2014. Relationship of Fundamental Movement Skills and Physical Activity
in Children and Adolescents: A Systematic Review. Psychology of Sport and Exercise 15, 4 (July 2014), 382–391.
https://doi.org/10.1016/j.psychsport.2014.03.005

[41] Lena Hübner and Claudia Voelcker-Rehage. 2017. Does Physical Activity Benefit Motor Performance and Learning of
Upper Extremity Tasks in Older Adults? – A Systematic Review. European Review of Aging and Physical Activity 14, 1
(Sept. 2017), 15. https://doi.org/10.1186/s11556-017-0181-7

[42] Bert H Jacobson, Krista Winter-Roberts, and Hugh A Gemmell. 1991. Influence of Caffeine on Selected Manual
Manipulation Skills. Perceptual and motor skills 72, 3_suppl (1991), 1175–1181.

[43] Krisztián Józsa, Tun Zaw Oo, Diana Borbélyová, and Gabriella Zentai. 2023. Exploring the Growth and Predictors of
Fine Motor Skills in Young Children Aged 4–8 Years. Education Sciences 13, 9 (Sept. 2023), 939. https://doi.org/10.
3390/educsci13090939

[44] Nobuhito Kasahara, Yosuke Oba, Shota Yamanaka, Anil Ufuk Batmaz, Wolfgang Stuerzlinger, and Homei Miyashita.
2024. Better Definition and Calculation of Throughput and Effective Parameters for Steering to Account for Subjective
Speed-accuracy Tradeoffs. In Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM,
Honolulu HI USA, 1–18. https://doi.org/10.1145/3613904.3642084

[45] K B Kiekpaeva, V A Gromov, R Gh Shaikhetdinov, and E Terekhina. [n. d.]. Original Article Integration of Fine Motor
Skills in the Physical Education Courses of Law Students. ([n. d.]).

[46] Marcus W. Koch, Jop P. Mostert, Jerry S. Wolinsky, Fred D. Lublin, Bernard Uitdehaag, and Gary R. Cutter. 2021. Com-
parison of the EDSS, Timed 25-Foot Walk, and the 9-Hole Peg Test as Clinical Trial Outcomes in Relapsing-Remitting
Multiple Sclerosis. Neurology 97, 16 (Oct. 2021), e1560–e1570. https://doi.org/10.1212/WNL.0000000000012690

[47] Ken Kocienda. 2018. Creative Selection: Inside Apple’s Design Process during the Golden Age of Steve Jobs. PanMacmillan.
[48] Sarah Martina Kolly, Roger Wattenhofer, and Samuel Welten. 2012. A Personal Touch: Recognizing Users Based on

Touch Screen Behavior. In Proceedings of the Third International Workshop on Sensing Applications on Mobile Phones.
ACM, Toronto Ontario Canada, 1–5. https://doi.org/10.1145/2389148.2389149

[49] Junhan Kong, Mingyuan Zhong, James Fogarty, and Jacob O. Wobbrock. 2024. The Ability-Based Design Mobile
Toolkit (ABD-MT): Developer Support for Runtime Interface Adaptation Based on Users’ Abilities. Proceedings of the
ACM on Human-Computer Interaction 8, MHCI (Sept. 2024), 1–26. https://doi.org/10.1145/3676524

[50] Akisue Kuramoto, Kazuki Hiranai, and Akihiko Seo. 2021. Strategies of Pen Tip Path Estimation and of Workload
Comparison for Handwriting Tasks. IEEE Sensors Journal 21, 3 (Feb. 2021), 3645–3652. https://doi.org/10.1109/JSEN.
2020.3028605

[51] Rebecca A. Langmaid, Nicole Papadopoulos, Beth P. Johnson, James G. Phillips, and Nicole J. Rinehart. 2014. Hand-
writing in Children With ADHD. Journal of Attention Disorders 18, 6 (Aug. 2014), 504–510. https://doi.org/10.1177/
1087054711434154

[52] Bettina Laugwitz, Theo Held, and Martin Schrepp. 2008. Construction and Evaluation of a User Experience Ques-
tionnaire. In HCI and Usability for Education and Work, Andreas Holzinger (Ed.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 63–76.

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 5, Article MHCI012. Publication date: September 2025.

https://doi.org/10.1007/s00125-008-1112-y
https://doi.org/10.1007/s00221-010-2186-6
https://doi.org/10.1016/0165-1781(81)90071-8
https://doi.org/10.1155/NP.2003.107
https://doi.org/10.1155/NP.2003.107
https://doi.org/10.1016/j.jphysparis.2006.03.007
https://doi.org/10.1177/154193120605000909
https://doi.org/10.1136/jnnp.50.6.714
https://doi.org/10.1038/nrn2298
https://doi.org/10.1016/j.psychsport.2014.03.005
https://doi.org/10.1186/s11556-017-0181-7
https://doi.org/10.3390/educsci13090939
https://doi.org/10.3390/educsci13090939
https://doi.org/10.1145/3613904.3642084
https://doi.org/10.1212/WNL.0000000000012690
https://doi.org/10.1145/2389148.2389149
https://doi.org/10.1145/3676524
https://doi.org/10.1109/JSEN.2020.3028605
https://doi.org/10.1109/JSEN.2020.3028605
https://doi.org/10.1177/1087054711434154
https://doi.org/10.1177/1087054711434154


From Pegs to Pixels MHCI012:25

[53] Qiushi Lin, Jianfei Luo, Zhongcheng Wu, Fei Shen, and Zengwu Sun. 2015. Characterization of Fine Motor Devel-
opment: Dynamic Analysis of Children’s Drawing Movements. Human Movement Science 40 (April 2015), 163–175.
https://doi.org/10.1016/j.humov.2014.12.010

[54] Sebastian Linxen, Christian Sturm, Florian Brühlmann, Vincent Cassau, Klaus Opwis, and Katharina Reinecke. 2021.
How WEIRD Is CHI?. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21).
Association for Computing Machinery, New York, NY, USA, 1–14. https://doi.org/10.1145/3411764.3445488

[55] M. G. Longstaff and R. A. Heath. 2006. Spiral Drawing Performance as an Indicator of Fine Motor Function in People
with Multiple Sclerosis. Human Movement Science 25, 4 (Oct. 2006), 474–491. https://doi.org/10.1016/j.humov.2006.05.
005

[56] Deborah Lupton. 2016. The Quantified Self. John Wiley & Sons.
[57] I Scott MacKenzie. 2003. Motor Behaviour Models for Human-Computer Interaction. (2003), 27–54.
[58] Philipp Martzog, Heidrun Stoeger, and Sebastian Suggate. 2019. Relations between Preschool Children’s Fine

Motor Skills and General Cognitive Abilities. Journal of Cognition and Development 20, 4 (Aug. 2019), 443–465.
https://doi.org/10.1080/15248372.2019.1607862

[59] Philipp Martzog and Sebastian Paul Suggate. 2019. Fine motor skills and mental imagery: Is it all in the mind? Journal
of Experimental Child Psychology 186 (2019), 59–72. https://doi.org/10.1016/j.jecp.2019.05.002

[60] Virgil Mathiowetz, Karen Weber, Nancy Kashman, and Gloria Volland. 1985. Adult Norms for the Nine Hole Peg
Test of Finger Dexterity. The Occupational Therapy Journal of Research 5, 1 (1985), 24–38. https://doi.org/10.1177/
153944928500500102

[61] Akiko Megumi, Akiko Suzuki, Jungpil Shin, and Akira Yasumura. 2022. Developmental Changes in Writing Dynamics
and Its Relationship with ADHD and ASD Tendencies: A Preliminary Study. https://doi.org/10.21203/rs.3.rs-
1616383/v1

[62] Fredrik Modig, Per-Anders Fransson, Måns Magnusson, and Mitesh Patel. 2012. Blood Alcohol Concentration at 0.06
and 0.10% Causes a Complex Multifaceted Deterioration of Body Movement Control. Alcohol 46, 1 (Feb. 2012), 75–88.
https://doi.org/10.1016/j.alcohol.2011.06.001

[63] Martez E. Mott, Radu-Daniel Vatavu, Shaun K. Kane, and Jacob O. Wobbrock. 2016. Smart Touch: Improving Touch
Accuracy for People with Motor Impairments with Template Matching. In Proceedings of the 2016 CHI Conference on
Human Factors in Computing Systems. ACM, San Jose California USA, 1934–1946. https://doi.org/10.1145/2858036.
2858390

[64] Lindsay S. Nagamatsu, Andrea M. Weinstein, Kirk I. Erickson, Jason Fanning, Elizabeth A. Awick, Arthur F. Kramer,
and Edward McAuley. 2016. Exercise Mode Moderates the Relationship Between Mobility and Basal Ganglia Volume in
Healthy Older Adults. Journal of the American Geriatrics Society 64, 1 (2016), 102–108. https://doi.org/10.1111/jgs.13882

[65] Thi Tuyet Hai Nguyen, Adam Jatowt, Mickael Coustaty, and Antoine Doucet. 2021. Survey of Post-OCR Processing
Approaches. ACM Comput. Surv. 54, 6 (July 2021), 124:1–124:37. https://doi.org/10.1145/3453476

[66] C. Niemann, B. Godde, U. M. Staudinger, and C. Voelcker-Rehage. 2014. Exercise-Induced Changes in Basal Ganglia
Volume and Cognition in Older Adults. Neuroscience 281 (Dec. 2014), 147–163. https://doi.org/10.1016/j.neuroscience.
2014.09.033

[67] Claudia Niemann, Ben Godde, and Claudia Voelcker-Rehage. 2014. Not Only Cardiovascular, but Also Coordinative
Exercise Increases Hippocampal Volume in Older Adults. Frontiers in Aging Neuroscience 6 (Aug. 2014). https:
//doi.org/10.3389/fnagi.2014.00170

[68] A Nikitha, J Geetha, and D.S JayaLakshmi. 2020. Handwritten Text Recognition Using Deep Learning. In 2020
International Conference on Recent Trends on Electronics, Information, Communication & Technology (RTEICT). 388–392.
https://doi.org/10.1109/RTEICT49044.2020.9315679

[69] Peterson K Ozili. 2023. The Acceptable R-square in Empirical Modelling for Social Science Research. In Social Research
Methodology and Publishing Results: A Guide to Non-Native English Speakers. IGI global, 134–143.

[70] Ranjitha P and Akshatha Prabhu. 2020. A Review on Challenges and Applications of Digital Graphology. In
2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). 368–374. https:
//doi.org/10.1109/ICESC48915.2020.9156013

[71] Andrew E. Papale and Bryan M. Hooks. 2018. Circuit Changes in Motor Cortex During Motor Skill Learning.
Neuroscience 368 (Jan. 2018), 283–297. https://doi.org/10.1016/j.neuroscience.2017.09.010

[72] Michael G. Paulin. 2008. The Role of the Cerebellum in Motor Control and Perception. Brain Behavior and Evolution
41, 1 (Jan. 2008), 39–50. https://doi.org/10.1159/000113822

[73] Janet L. Poole, Patricia A. Burtner, Theresa A. Torres, Cheryl Kirk McMullen, Amy Markham, Michelle Lee Marcum,
Jennifer Bradley Anderson, and Clifford Qualls. 2005. Measuring Dexterity in Children Using the Nine-hole Peg Test.
Journal of Hand Therapy 18, 3 (July 2005), 348–351. https://doi.org/10.1197/j.jht.2005.04.003

[74] Sujata D. Pradhan, Bambi R. Brewer, George E. Carvell, Patrick J. Sparto, Anthony Delitto, and Yoky Matsuoka.
2010. Assessment of Fine Motor Control in Individuals with Parkinson’s Disease Using Force Tracking with a

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 5, Article MHCI012. Publication date: September 2025.

https://doi.org/10.1016/j.humov.2014.12.010
https://doi.org/10.1145/3411764.3445488
https://doi.org/10.1016/j.humov.2006.05.005
https://doi.org/10.1016/j.humov.2006.05.005
https://doi.org/10.1080/15248372.2019.1607862
https://doi.org/10.1016/j.jecp.2019.05.002
https://doi.org/10.1177/153944928500500102
https://doi.org/10.1177/153944928500500102
https://doi.org/10.21203/rs.3.rs-1616383/v1
https://doi.org/10.21203/rs.3.rs-1616383/v1
https://doi.org/10.1016/j.alcohol.2011.06.001
https://doi.org/10.1145/2858036.2858390
https://doi.org/10.1145/2858036.2858390
https://doi.org/10.1111/jgs.13882
https://doi.org/10.1145/3453476
https://doi.org/10.1016/j.neuroscience.2014.09.033
https://doi.org/10.1016/j.neuroscience.2014.09.033
https://doi.org/10.3389/fnagi.2014.00170
https://doi.org/10.3389/fnagi.2014.00170
https://doi.org/10.1109/RTEICT49044.2020.9315679
https://doi.org/10.1109/ICESC48915.2020.9156013
https://doi.org/10.1109/ICESC48915.2020.9156013
https://doi.org/10.1016/j.neuroscience.2017.09.010
https://doi.org/10.1159/000113822
https://doi.org/10.1197/j.jht.2005.04.003


MHCI012:26 Schön, et al.

Secondary Cognitive Task. Journal of Neurologic Physical Therapy 34, 1 (March 2010), 32. https://doi.org/10.1097/
NPT.0b013e3181d055a6

[75] Elizabeth Proud, Meg E. Morris, Belinda Bilney, Kimberly J. Miller, Maarten J. Nijkrake, Marten Munneke, and
Jennifer L. McGinley. 2021. Hand Dexterity Assessment in Parkinson’s Disease: Construct Validity of the 9-Hole Peg
Test for the More Affected Hand. Disability and Rehabilitation 43, 26 (Dec. 2021), 3834–3838. https://doi.org/10.1080/
09638288.2020.1754474

[76] Elizabeth L. Proud, Kimberly J. Miller, Belinda Bilney, Meg E. Morris, and Jennifer L. McGinley. 2020. Construct
Validity of the 9-Hole Peg Test and Purdue Pegboard Test in People with Mild to Moderately Severe Parkinson’s
Disease. Physiotherapy 107 (June 2020), 202–208. https://doi.org/10.1016/j.physio.2019.12.002

[77] Yugang Qi, Sijie Tan, Mingyang Sui, and Jianxiong Wang. 2018-Jan-Feb. SUPERVISED PHYSICAL TRAINING
IMPROVES FINE MOTOR SKILLS OF 5-YEAR-OLD CHILDREN. Revista Brasileira de Medicina do Esporte 24 (2018-
Jan-Feb), 09–12. https://doi.org/10.1590/1517-869220182401177117

[78] Eros Quarta, Riccardo Bravi, Diego Minciacchi, and Erez James Cohen. 2021. Circle Drawing and Tracing Dataset for
Evaluation of Fine Motor Control. Data in Brief 35 (April 2021), 106763. https://doi.org/10.1016/j.dib.2021.106763

[79] Marie Brossard Racine, Annette Majnemer, Michael Shevell, and Laurie Snider. 2008. Handwriting Performance
in Children With Attention Deficit Hyperactivity Disorder (ADHD). Journal of Child Neurology 23, 4 (April 2008),
399–406. https://doi.org/10.1177/0883073807309244

[80] Louise Robin, Laure Fernandez, Maxime T. Robert, Eric Hermand, Axelle Gelineau, and Stéphane Mandigout. 2023.
Influence of Daily Physical Activity on Fine Motor Skills of Adults around a Fitts Task. Folia Medica 65, 6 (Dec. 2023),
950–957. https://doi.org/10.3897/folmed.65.e103060

[81] Marc Roig, Kasper Skriver, Jesper Lundbye-Jensen, Bente Kiens, and Jens Bo Nielsen. 2012. A Single Bout of Exercise
Improves Motor Memory. PLOS ONE 7, 9 (Sept. 2012), e44594. https://doi.org/10.1371/journal.pone.0044594

[82] Marina Roizenblatt, Thiago Marques Fidalgo, Murilo Polizelli, Natasha Ferreira Santos da Cruz, Arnaldo Roizenblatt,
Kim Jiramongkolchai, Peter Louis Gehlbach, Michel Eid Farah, Rubens Belfort, and Mauricio Maia. 2021. Effect of
Chronic Cocaine Use on Fine Motor Coordination Tested during Ophthalmic Vitreoretinal Simulated Performance.
Journal of Psychiatric Research 132 (Jan. 2021), 7–12. https://doi.org/10.1016/j.jpsychires.2020.09.032

[83] MG Roulston. 1959. The Fatigue Factor: An Essay Dealing with the Effects of Physical Fatigue on Handwriting Habits.
An Unpublished Report of a Study Conducted by the RCMP Crime Detection Laboratories (1959).

[84] Samsuryadi Samsuryadi, Rudi Kurniawan, and Fatma Susilawati Mohamad. 2021. Automated Handwriting Analysis
Based on Pattern Recognition: A Survey. Indonesian Journal of Electrical Engineering and Computer Science 22, 1
(April 2021), 196. https://doi.org/10.11591/ijeecs.v22.i1.pp196-206

[85] Holger Schielzeth, Niels J. Dingemanse, Shinichi Nakagawa, David F. Westneat, Hassen Allegue, Céline Teplitsky,
Denis Réale, Ned A. Dochtermann, László Zsolt Garamszegi, and Yimen G. Araya-Ajoy. 2020. Robustness of Linear
Mixed-effects Models to Violations of Distributional Assumptions. Methods in Ecology and Evolution 11, 9 (Sept. 2020),
1141–1152. https://doi.org/10.1111/2041-210X.13434

[86] Dominik Schön, Thomas Kosch, Florian Müller, Martin Schmitz, Sebastian Günther, Lukas Bommhardt, and Max
Mühlhäuser. 2023. Tailor Twist: Assessing Rotational Mid-Air Interactions for Augmented Reality. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems. ACM, Hamburg Germany, 1–14. https://doi.org/10.
1145/3544548.3581461

[87] Enric Sesa-Nogueras, Marcos Faundez-Zanuy, and Manuel-Vicente Garnacho-Castaño. 2021. The Effect of Fatigue
on the Performance of Online Writer Recognition. Cognitive Computation 13, 5 (Sept. 2021), 1374–1388. https:
//doi.org/10.1007/s12559-021-09943-5

[88] Claire E. Sexton, Jill F. Betts, Naiara Demnitz, Helen Dawes, Klaus P. Ebmeier, and Heidi Johansen-Berg. 2016. A
Systematic Review of MRI Studies Examining the Relationship between Physical Fitness and Activity and the White
Matter of the Ageing Brain. NeuroImage 131 (May 2016), 81–90. https://doi.org/10.1016/j.neuroimage.2015.09.071

[89] C. E. Shannon. 1948. A Mathematical Theory of Communication. The Bell System Technical Journal 27, 3 (July 1948),
379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

[90] Ather Sharif, Victoria Pao, Katharina Reinecke, and Jacob O. Wobbrock. 2020. The Reliability of Fitts’s Law as a
Movement Model for People with and without Limited Fine Motor Function. In Proceedings of the 22nd International
ACM SIGACCESS Conference on Computers and Accessibility (ASSETS ’20). Association for Computing Machinery,
New York, NY, USA, 1–15. https://doi.org/10.1145/3373625.3416999

[91] Jungpil Shin, Md. Maniruzzaman, Yuta Uchida, Md. Al Mehedi Hasan, Akiko Megumi, and Akira Yasumura. 2023.
Handwriting-Based ADHD Detection for Children Having ASD Using Machine Learning Approaches. IEEE Access 11
(2023), 84974–84984. https://doi.org/10.1109/ACCESS.2023.3302903

[92] Benjamin A. Sibley and Jennifer L. Etnier. 2003. The Relationship between Physical Activity and Cognition in Children:
A Meta-Analysis. Pediatric Exercise Science 15, 3 (Aug. 2003), 243–256. https://doi.org/10.1123/pes.15.3.243

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 5, Article MHCI012. Publication date: September 2025.

https://doi.org/10.1097/NPT.0b013e3181d055a6
https://doi.org/10.1097/NPT.0b013e3181d055a6
https://doi.org/10.1080/09638288.2020.1754474
https://doi.org/10.1080/09638288.2020.1754474
https://doi.org/10.1016/j.physio.2019.12.002
https://doi.org/10.1590/1517-869220182401177117
https://doi.org/10.1016/j.dib.2021.106763
https://doi.org/10.1177/0883073807309244
https://doi.org/10.3897/folmed.65.e103060
https://doi.org/10.1371/journal.pone.0044594
https://doi.org/10.1016/j.jpsychires.2020.09.032
https://doi.org/10.11591/ijeecs.v22.i1.pp196-206
https://doi.org/10.1111/2041-210X.13434
https://doi.org/10.1145/3544548.3581461
https://doi.org/10.1145/3544548.3581461
https://doi.org/10.1007/s12559-021-09943-5
https://doi.org/10.1007/s12559-021-09943-5
https://doi.org/10.1016/j.neuroimage.2015.09.071
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1145/3373625.3416999
https://doi.org/10.1109/ACCESS.2023.3302903
https://doi.org/10.1123/pes.15.3.243


From Pegs to Pixels MHCI012:27

[93] Amaya M. Singh and W. Richard Staines. 2015. The Effects of Acute Aerobic Exercise on the Primary Motor Cortex.
Journal of Motor Behavior 47, 4 (July 2015), 328–339. https://doi.org/10.1080/00222895.2014.983450

[94] Darrell K. Skinner and Sandra L. Curwin. 2007. Assessment of Fine Motor Control in Patients with Occupation-Related
Lateral Epicondylitis. Manual Therapy 12, 3 (Aug. 2007), 249–255. https://doi.org/10.1016/j.math.2006.06.018

[95] Kasper Skriver, Marc Roig, Jesper Lundbye-Jensen, Jessica Pingel, Jørn Wulff Helge, Bente Kiens, and Jens Bo Nielsen.
2014. Acute Exercise Improves Motor Memory: Exploring Potential Biomarkers. Neurobiology of Learning and Memory
116 (Dec. 2014), 46–58. https://doi.org/10.1016/j.nlm.2014.08.004

[96] Michael W. Smith, Joseph Sharit, and Sara J. Czaja. 1999. Aging, Motor Control, and the Performance of Computer
Mouse Tasks. Human Factors 41, 3 (Sept. 1999), 389–396. https://doi.org/10.1518/001872099779611102

[97] Esther J. Smits, Antti J. Tolonen, Luc Cluitmans, Mark van Gils, Rutger C. Zietsma, Marina A. J. Tijssen, and
Natasha M. Maurits. 2018. Reproducibility of Standardized Fine Motor Control Tasks and Age Effects in Healthy
Adults. Measurement 114 (Jan. 2018), 177–184. https://doi.org/10.1016/j.measurement.2017.09.011

[98] Pablo Hidelbrando S. Souto, Juliana Nunes Santos, Hércules Ribeiro Leite, Mijna Hadders-Algra, Sabrina Conceição
Guedes, Juliana Nogueira Pontes Nobre, Lívia Rodrigues Santos, and Rosane Luzia de Souza Morais. 2020. Tablet
Use in Young Children Is Associated with Advanced Fine Motor Skills. Journal of Motor Behavior 52, 2 (March 2020),
196–203. https://doi.org/10.1080/00222895.2019.1602505

[99] Matthew A Statton, Marysol Encarnacion, Pablo Celnik, and Amy J Bastian. 2015. A Single Bout of Moderate Aerobic
Exercise Improves Motor Skill Acquisition. PloS one 10, 10 (2015), e0141393.

[100] Anthony B Stevens, William R McKane, Patrick M Bell, Paul Bell, David J King, and John R Hayes. 1989. Psychomotor
Performance and Counterregulatory Responses During Mild Hypoglycemia in Healthy Volunteers. Diabetes Care 12,
1 (Jan. 1989), 12–17. https://doi.org/10.2337/diacare.12.1.12

[101] David F. Stodden, Jacqueline D. Goodway, Stephen J. Langendorfer, Mary Ann Roberton, Mary E. Rudisill, Clersida
Garcia, and Luis E. Garcia. 2008. A Developmental Perspective on the Role of Motor Skill Competence in Physical
Activity: An Emergent Relationship. Quest 60, 2 (May 2008), 290–306. https://doi.org/10.1080/00336297.2008.10483582

[102] Nishant Subramani, Alexandre Matton, Malcolm Greaves, and Adrian Lam. 2021. A Survey of Deep Learning
Approaches for OCR and Document Understanding. https://doi.org/10.48550/arXiv.2011.13534 arXiv:2011.13534 [cs]

[103] Sandra Sülzenbrück, Mathias Hegele, Gerhard Rinkenauer, and Herbert Heuer. 2011. The Death of Handwriting:
Secondary Effects of Frequent Computer Use on Basic Motor Skills. Journal of Motor Behavior 43, 3 (May 2011),
247–251. https://doi.org/10.1080/00222895.2011.571727

[104] Marco Taubert, Arno Villringer, andNico Lehmann. 2015. Endurance Exercise as an “Endogenous” Neuro-enhancement
Strategy to Facilitate Motor Learning. Frontiers in Human Neuroscience 9 (Dec. 2015). https://doi.org/10.3389/fnhum.
2015.00692

[105] Luigi Tesio, Anna Simone, Giuliano Zebellin, Viviana Rota, Calogero Malfitano, and Laura Perucca. 2016. Bimanual
Dexterity Assessment: Validation of a Revised Form of the Turning Subtest from the Minnesota Dexterity Test. Inter-
national Journal of Rehabilitation Research. Internationale Zeitschrift Fur Rehabilitationsforschung. Revue Internationale
De Recherches De Readaptation 39, 1 (March 2016), 57–62. https://doi.org/10.1097/MRR.0000000000000145

[106] Jonathan S. Thacker, Laura E. Middleton, William E. McIlroy, and W. Richard Staines. 2014. The Influence of an Acute
Bout of Aerobic Exercise on Cortical Contributions to Motor Preparation and Execution. Physiological Reports 2, 10
(2014), e12178. https://doi.org/10.14814/phy2.12178

[107] Feng Tian, Xiangmin Fan, Junjun Fan, Yicheng Zhu, Jing Gao, DakuoWang, Xiaojun Bi, and HonganWang. 2019. What
Can Gestures Tell?: Detecting Motor Impairment in Early Parkinson’s from Common Touch Gestural Interactions. In
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems. ACM, Glasgow Scotland Uk, 1–14.
https://doi.org/10.1145/3290605.3300313

[108] Arend Willem Alexander Van Gemmert. 1997. The effects of mental load and stress on the dynamics of fine motor tasks.
Nijmegen: NICI, Nijmeegs Instituut voor Cognitie en Informatie.

[109] Y. L. Venevtseva, A. Kh Melnikov, and S. A. Nesterova. 2024. Sleep and fine motor skills: the influence of sex
and level of physical activity. Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova 124, 5. Vyp. 2 (2024), 33–38.
https://doi.org/10.17116/jnevro202412405233

[110] Claudia Voelcker-Rehage, Ben Godde, and Ursula M. Staudinger. 2011. Cardiovascular and Coordination Training
Differentially Improve Cognitive Performance and Neural Processing in Older Adults. Frontiers in Human Neuroscience
5 (March 2011). https://doi.org/10.3389/fnhum.2011.00026

[111] Claudia Voelcker-Rehage and Claudia Niemann. 2013. Structural and Functional Brain Changes Related to Different
Types of Physical Activity across the Life Span. Neuroscience & Biobehavioral Reviews 37, 9, Part B (Nov. 2013),
2268–2295. https://doi.org/10.1016/j.neubiorev.2013.01.028

[112] Stéphanie Vuillermot, Aniña Pescatore, Lisa Holper, Daniel C. Kiper, and Kynan Eng. 2009. An Extended Drawing
Test for the Assessment of Arm and Hand Function with a Performance Invariant for Healthy Subjects. Journal of
Neuroscience Methods 177, 2 (March 2009), 452–460. https://doi.org/10.1016/j.jneumeth.2008.10.018

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 5, Article MHCI012. Publication date: September 2025.

https://doi.org/10.1080/00222895.2014.983450
https://doi.org/10.1016/j.math.2006.06.018
https://doi.org/10.1016/j.nlm.2014.08.004
https://doi.org/10.1518/001872099779611102
https://doi.org/10.1016/j.measurement.2017.09.011
https://doi.org/10.1080/00222895.2019.1602505
https://doi.org/10.2337/diacare.12.1.12
https://doi.org/10.1080/00336297.2008.10483582
https://doi.org/10.48550/arXiv.2011.13534
https://arxiv.org/abs/2011.13534
https://doi.org/10.1080/00222895.2011.571727
https://doi.org/10.3389/fnhum.2015.00692
https://doi.org/10.3389/fnhum.2015.00692
https://doi.org/10.1097/MRR.0000000000000145
https://doi.org/10.14814/phy2.12178
https://doi.org/10.1145/3290605.3300313
https://doi.org/10.17116/jnevro202412405233
https://doi.org/10.3389/fnhum.2011.00026
https://doi.org/10.1016/j.neubiorev.2013.01.028
https://doi.org/10.1016/j.jneumeth.2008.10.018


MHCI012:28 Schön, et al.

[113] Gerd Wagner, Marco Herbsleb, Feliberto de la Cruz, Andy Schumann, Stefanie Köhler, Christian Puta, Holger W.
Gabriel, Jürgen R. Reichenbach, and Karl-Jürgen Bär. 2017. Changes in fMRI Activation in Anterior Hippocampus
and Motor Cortex during Memory Retrieval after an Intense Exercise Intervention. Biological Psychology 124 (March
2017), 65–78. https://doi.org/10.1016/j.biopsycho.2017.01.003

[114] Ying-Chih Wang, Richard W. Bohannon, Jay Kapellusch, Arun Garg, and Richard C. Gershon. 2015. Dexterity as
Measured with the 9-Hole Peg Test (9-HPT) across the Age Span. Journal of Hand Therapy 28, 1 (Jan. 2015), 53–60.
https://doi.org/10.1016/j.jht.2014.09.002

[115] W. Wijianto and Kartika Saktiyarini. 2022. RELATIONSHIP OF PHYSICAL ACTIVITY WITH FINE MOTOR SKILLS
IN 3-4 YEARS OLD CHILDREN. Gaster 20, 2 (Aug. 2022), 207–215. https://doi.org/10.30787/gaster.v20i2.856

[116] Guido A Zäch and Hans Georg Koch. 2006. Paraplegie: Ganzheitliche Rehabilitation. Karger Medical and Scientific
Publishers.

[117] Sergei Zarembo, Sven Nõmm, Kadri Medijainen, Pille Taba, and Aaro Toomela. 2021. CNN Based Analysis of the
Luria’s Alternating Series Test for Parkinson’s Disease Diagnostics. In Recent Challenges in Intelligent Information and
Database Systems, Tzung-Pei Hong, Krystian Wojtkiewicz, Rathachai Chawuthai, and Pawel Sitek (Eds.). Vol. 1371.
Springer Singapore, Singapore, 3–13. https://doi.org/10.1007/978-981-16-1685-3_1

Proc. ACM Hum.-Comput. Interact., Vol. 9, No. 5, Article MHCI012. Publication date: September 2025.

https://doi.org/10.1016/j.biopsycho.2017.01.003
https://doi.org/10.1016/j.jht.2014.09.002
https://doi.org/10.30787/gaster.v20i2.856
https://doi.org/10.1007/978-981-16-1685-3_1


From Pegs to Pixels MHCI012:29

A Participation’s NHPT Completion Time
Figure 7 shows our participant’s NHPT completion times during the experiment. The graphs show
on the x-axis the five trials pre-PE, post-PE-1, post-PE-2, post-PE-3, and post-PE-4. pre-PE marks the
sample prior to Physical Exercise exposure, while the post-PE-* shows the completion time after
exposure with rest between sampling. NHPT times of the introduction to the test scenario were
not recorded and are not presented here.
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Fig. 7. Participants NHPT Completion times with the respective trend in decrease of the completion time.

Participant 18 is not displayed to conform the request to not publish their respective raw data.
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