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Abstract

Background: Scientific workflow systems are increasingly popular for expressing and executing complex data analysis pipelines over
large datasets, as they offer reproducibility, dependability, and scalability of analyses by automatic parallelization on large compute
clusters. However, implementing workflows is difficult due to the involvement of many black-box tools and the deep infrastructure
stack necessary for their execution. Simultaneously, user-supporting tools are rare, and the number of available examples is much
lower than in classical programming languages.

Results: To address these challenges, we investigate the efficiency of large language models (LLMs), specifically ChatGPT, to support
users when dealing with scientific workflows. We performed 3 user studies in 2 scientific domains to evaluate ChatGPT for com-
prehending, adapting, and extending workflows. Our results indicate that LLMs efficiently interpret workflows but achieve lower
performance for exchanging components or purposeful workflow extensions. We characterize their limitations in these challenging
scenarios and suggest future research directions.

Conclusions: Our results show a high accuracy for comprehending and explaining scientific workflows while achieving a reduced
performance for modifying and extending workflow descriptions. These findings clearly illustrate the need for further research in
this area.

Keywords: large language models, scientific workflows, user support, ChatGPT

aiding in building a comprehensive understanding of biolog-
Key points: ical processes and human diseases. Bioinformatics workflows
typically include many individual computational steps, such as
data preprocessing, extensive quality control, aggregation of raw
sequencing data into consensus sequences, machine learning-
based tasks for classification and clustering, statistical assess-
ments, and result visualization. Each step is carried out by a spe-
cific program, typically not written by the workflow developer but
exchanged within a worldwide community of researchers [4]. Ex-
ecution of a workflow on a distributed infrastructure, in principle,
is taken care of by a workflow engine; however, the idiosyncrasies
of the different infrastructures (e.g., file system, number and fea-
tures of compute nodes, applied resource manager, and scheduler)
often require workflow users to tune their scripts individually for
every new system [5].

Introduction However, typical developers of workflows are researchers from
heterogeneous scientific fields who possess expertise in their
respective domains but often lack in-depth knowledge in soft-
ware development or distributed computing. They often en-
counter difficulties understanding the complex implementa-
tions of exchanged codes and the deep infrastructure stack
necessary for their distributed execution. This situation chal-
lenges efficient workflow implementation and slows down or
hinders data exploration and scientific innovation processes [6].

® We explore large language models (LLMs) to support
users who develop scientific workflows.

® We are the first to conduct user studies involving domain
experts.

® We conduct 3 studies to assess LLMs in scientific work-
flow comprehension, adaptation, and extension.

® Ourresultsindicate that LLMs efficiently interpret work-
flows.

® Qur results show room for improvement regarding com-
ponent adaptation and workflow extension.

Large-scale data analysis pipelines (also known as scientific work-
flows) are crucial in driving research advances for natural sci-
ences [1]. They are pivotal in accelerating large and complex
data analysis on distributed infrastructures and offer essential
features, such as reproducibility and dependability [2]. In bioin-
formatics, for instance, scientific workflows are analyzing the
terabyte-large datasets produced by modern DNA or RNA se-
quencing machines in a wide variety of experiments [3], thereby
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Consequently, low human productivity is a significant bottle-
neck in the creation, adaption, and interpretation of scientific
workflows [7].

Parallel to this, there is a well-established field in human-
computer interaction focusing on assisting end-user program-
mers and software development, as highlighted by previous
work [8-11], to reduce the perceived cognitive workload and im-
prove the overall programmer performance [12]. Research in this
field includes programming-by-demonstration [13, 14], visual pro-
gramming [15, 16], and natural language instructions [17]. Recent
work in this area particularly investigated prospects of general-
purpose large language models (LLMs), such as ChatGPT [18],
LLaMA [19], and Bloom[20], for supporting end-user program-
ming [21-23] and software development in general [24, 25]. For
instance, Bimbatti et al. [21] explore using ChatGPT to enhance
natural language understanding within an end-user development
environment, assisting nonexpert users in developing programs
for collaborative robots. Moreover, White et al. [24] introduce
prompt design techniques for automating typical software engi-
neering tasks, including ensuring code independence from third-
party libraries and generating an application programming in-
terface specification from a list of requirements. Surameery and
Shakor [25] evaluate LLMs for supporting code debugging. How-
ever, results from such studies, which focus on standard pro-
gramming languages, cannot easily be transferred to workflow
systems. Workflow scripts mostly call external tools with agnos-
tic names and have little recognizable control structures or pro-
tected keywords. Publicly available examples are scarce; for in-
stance, the community repository of the popular workflow system
Nextflow [26] currently offers only 55 released workflows [27]. Fur-
thermore, workflows can only be understood when the distributed
system underlying their execution is considered, creating depen-
dencies much different from usual programs. Moreover, studies
investigating how LLMs support users in data science—the field
in which workflows are applied extensively—do not address the
unique characteristics of scientific workflows either and are lim-
ited to theoretical considerations [28, 29]. Practical studies, espe-
cially those involving real users, are badly missing.

In this work, we address these shortcomings by describing
3 user studies in 2 different scientific fields (biomedicine and
Earth observation) that evaluate the suitability of ChatGPT for
comprehending, modifying, and extending scientific workflows.
Specifically, we evaluate the correctness of ChatGPT regarding
explainability, exchange of software components, and extension
when providing real-world scientific workflow scripts. Our results
show a high accuracy for comprehending and explaining scientific
workflows but reduced performance for modifying and extending
workflow scripts. The domain experts positively assessed the ex-
plainability in qualitative inquiries, emphasizing the time-saving
capabilities of using LLMs while engineering existing workflows.
Overall, our work indicates that general-purpose LLMs have the
potential to improve human performance when analyzing com-
plex scientific workflows.

Background

Previous research investigated how related domains, such as pro-
gramming, can be augmented using interactive technologies [11,
30]. In contrast to programming, where applications use a single
programming language and are often executed on a single sys-
tem, scientific workflows combine multiple software artifacts on
distributed stacks for advanced data processing. We ground the
reader by providing a literature review about scientific workflows

and introducing large language models, including their utility to
facilitate the creation of software artifacts.

Scientific workflows

Scientific workflows are widely used by diverse research com-
munities, such as biomedicine [31], astronomy [32], climatology
[33], and Earth observation [34], to manage the dataflow and dis-
tributed execution of complex analyses, simulations, and experi-
ments. A scientific workflow comprises a series of interconnected
computational steps, often with diverse patterns of dependencies,
that define how to process and analyze data to reach a particu-
lar research objective. Scientific workflows can be regarded as di-
rected acyclic graphs in which the nodes represent computational
tasks or operations and edges model dependencies or dataflow
between these tasks. An edge from one node to another signifies
that the output of the first task is used as input for the second
[35]. For example, Fig. 1A illustrates the computational steps, the
tools, and the dataflow of a bioinformatics workflow for perform-
ing differential gene expression analysis. During workflow execu-
tion, a single computation step often involves multiple processes,
which are typically executed in a distributed fashion on different
machines and batches of the input data, resulting in a much more
complex execution graph. Consequently, scientific workflows help
facilitate the reproducibility and traceability of data analyses by
explicitly outlining the steps and parameters involved [36]. Fur-
thermore, they allow for automation, scaling, and optimization of
computational processes, which is especially critical in disciplines
dealing with large datasets [37]. The increasing importance of sci-
entific workflows for scientific progress has led to a growing inter-
est in developing more user-friendly tools and methods through
the research community. Scientific workflow management sys-
tems, like Apache Airflow [38], Galaxy [39], Nextflow [40], Pega-
sus [41], and Snakemake [42], are specifically developed to sup-
port users in designing and executing scientific workflows in var-
ious aspects. Key features of such management systems typically
include workflow design and composition, (distributed) workflow
execution and scheduling, provenance tracking, recovery and fail-
ure handling, and resource management [36]. Fig. 1B highlights
the implementation of the example workflow as well as a single
computational step (see Fig. 1C), that is, reference genome align-
ment using the STAR toolkit in Nextflow.

Scientific workflows are often reused and adopted for complex
data analysis [6]. Most of the time, users of scientific workflows
are unaware of the workflow’s internal functionality and techni-
cal details. Instead, users of scientific workflows represent domain
experts, such as mathematicians, physicians, or bioinformatics,
who are experts in their respective domains but not necessarily in
programming and interpreting scientific workflows. Existing sci-
entific workflows are implemented and maintained by persons
other than the domain user. This reduces the direct interaction
with scientific workflows to a minimum, where domain experts
only hand in the input data and evaluate the output data. Conse-
quently, domain experts using a workflow often do not have the
knowledge to modify, extend, or interpret the details of scientific
workflows.

Large language models

Language models, such as BERT [43], GPT-3 [44], Bloom [20], and
PalM-2 [45], build the foundation of many recent advancements
in natural language processing and understanding. These models
have billions of parameters and are generally pretrained on vast
sets of texts from the web and other repositories, enabling them to
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FASTP (read_pairs_ch)
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STAR_INDEX REFERENCE (params.reference_genome,
params.reference_annotation)

# Perform alignment to reference genome

STAR_ALIGN (CHECK_STRANDNESS.out,
FASTP.out.sample_trimmed,
STAR_INDEX_REFERENCE.out,
params.reference_annotation)

SAMTOOLS (STAR_ALIGN.out.sample_sam)

# Run differential expression analysis

CUFFLINKS (CHECK_STRANDNESS. out,
SAMTOOLS . out . sample_bam,
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Description of a Single Step / Task

process STAR_ALIGN {
label 'star'
publishDir params.outdir

input:

env STRANDNESS
tuple val(sample name), path(reads)
path (index)
path (annotation)

STAR_ALIGN }

output:
tuple val(sample_name),
path("${sample_name}*.sam"),
emit: sample_sam

shell:
if [[ ($STRANDNESS =
($STRANDNESS =
STAR \\
--genomeDir . \\
--readFilesIn !{reads([0]} !{reads[1]} \\
--runThreadN !{params.threads} \\
--outFileNamePrefix !{sample_name}. \\
--s3jdbGTFfile !{annotation} \\
--alignSoftClipAtReferenceEnds No \\
--outFilterIntronMotifs RemoveNoncanonical \\
--outSAMattrIHstart 0

"firststrand") ||
secondstrand") ]]; then

elif [[ $STRANDNESS == "unstranded" ]]; then
STAR \\
--genomeDir . \\
--readFilesIn !{reads[0]} !{reads[1]} \\

--alignSoftClipAtReferenceEnds No \\
--outSAMstrandField intronMotif \\
—-outFilterIntronMotifs RemoveNoncanonical \\
--runThreadN !{params.threads} \\
--outFileNamePrefix !{sample name}. \\
--sjdbGTFfile !{annotation} \\
--outSAMattrIHstart 0

£i

Figure 1: Example bioinformatics workflow for differential gene expression analysis created by a domain expert recruited in our study. The
figure highlights the conceptual schema of the workflow (A), its implementation in Nextflow (B), and the implementation of a single step (C), that is,
reference genome alignment using the STAR tool. The workflow comprises 6 computational steps in total. For each step, the used tool is given in blue

below the task name.

encode syntactic and semantic relationships in human language.
As a consequence, generative language models, such as ChatGPT,
LLaMA [19], and LAMDA [46], can produce machine-generated
high-quality text that is indistinguishable from human writing.
These generative capabilities have empowered these models to
assist in diverse (creative) writing tasks and have been utilized to
facilitate a wide range of interactive language-based applications
within the human-computer interaction community [47-52]. For
instance, WordCraft [47] investigates the utilization of LLMs to aid
fiction writers in tasks ranging from transforming a text to re-
semble a “Dickensian” style to providing suggestions to combat
writer’s block. Their findings indicate that writers found such text-
generating models beneficial even when the generated text is not
perfect. Petridis et al. [48] introduce AngleKindling, an interactive
tool that employs LLMs to support journalists exploring different
angles for reporting on a press release. Their study with 12 profes-
sional journalists shows that participants found the system con-
siderably more helpful and less mentally demanding than com-
petitor brainstorming tools. Other applications include prototyp-
ing support [49], generation of titles and synopses from keywords
[52], conversational interactions with mobile user interfaces [50],
and conceptional blending [51].

Next to their text writing capabilities, language models are fur-
ther known to retain commonsense knowledge within their train-
ing data, effectively transforming them into accessible knowl-
edge stores that can be seamlessly queried using natural lan-
guage prompts. For instance, experiments with BERT [43] highlight
that the model performance is competitive with traditional in-
formation extraction and open-domain question answering. Fur-
thermore, recent studies show the potential of using ChatGPT for
knowledge base construction, inspired by the fact that these lan-
guage models have been pretrained on vast internet-scale corpora
that encompass diverse knowledge domains [53]. However, it is

worth noting that LLMs are known to frequently generate halluci-
nations, which are outputs that, while statistically plausible and
seemingly believable, are factually incorrect [54, 55].

Using LLMs to support programming

The ability to generate new text and to reconstruct existing infor-
mation makes LLMs highly appropriate to support users in soft-
ware development, as programming often requires not only the
creation of novel code segments tailored to current requirements
and tasks but also depends on the application of established algo-
rithms, software libraries, and best practices. Accordingly, a large
number of papers investigate LLMs specially trained for code gen-
eration [56-59] as well as different approaches leveraging these
models to provide interactive programmer support [23, 60-62]. For
instance, Jiang et al. [61] discuss GenlLine, a natural language code
synthesis tool based on a generative LLM and problem-specific
prompts for creating or changing program code. The findings from
a user study indicate that the approach can provide valuable sup-
port to developers. However, they also encounter several chal-
lenges, such as participants finding it difficult to form an accurate
mental model of the kinds of requests that the model can reliably
translate. Similarly, Vaithilingam et al. [62] conducted a user study
with 24 participants evaluating their usage and experiences us-
ing the GitHub Copilot [63] code generation model while program-
ming. The authors find that the synthesized code often provided a
helpful starting point and saved online searching efforts. However,
participants encountered issues with understanding, editing, and
debugging code snippets from Copilot, resulting in not necessar-
ily improved task completion times and success rates. These find-
ings align with the results of similar studies [64]. However, a con-
trolled experiment in [65] records a positive effect of code genera-
tors when used in introductory programming courses for minors.
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The use of generative LLMs and code generators has been
scarcely explored in scientific data analysis and not yet for sci-
entific workflows. Liu et al. [23] examine the Codex code genera-
tor [56] in the context of data analysis in spreadsheets for non-
expert end-user programmers. Moreover, several studies investi-
gate the utilization for data visualization [66, 67]. For example,
the study by Maddigan et al. [66] evaluates the efficiency of Chat-
GPT, Codex, and GPT-3 in producing scripts to create visualiza-
tions based on natural language queries. The studies that have
the most overlap with our work regarding the intention to support
the design of data analysis pipelines are given by Hassan et al. [67]
and Zahra et al. [68]. In the case of the former, ChatGPT is used
to build a conversational, natural language-based interface be-
tween users and the scikit-learn machine learning framework [69]
supporting users in several phases of a machine learning project
ranging from initial task formulation to comprehensive result in-
terpretation. For the latter, Laminar, a framework for serverless
computing, is proposed, which offers possibilities for code search-
ing, summarization, and completion. However, the framework is
solely focused on Python implementations.

Methods

This section describes the study methodology. We begin by out-
lining about the general study approach. Then, we explain the re-
search process for each experiment. Based on related work and
the objectives of our research, we state the following research
questions:

RQ1: How performant is ChatGPT for comprehending and ex-
plaining scientific workflows?

RQ2: How suitable is ChatGPT in suggesting and applying mod-
ifications for scientific workflows?

RQ3: How efficient is ChatGPT in extending scientific work-
flows?

General study design

To answer our research questions, we investigate the capabilities
of ChatGPT, a widely used LLM, to comprehend existing workflow
descriptions (cf. Study I), to exchange tools used within a work-
flow (cf. Study II), and to extend a partially given workflow (cf.
Study III) using 3 distinct user studies. We select these use cases
as understanding the dataflow and the analysis performed is es-
sential for successfully applying scientific workflows. Moreover,
exchanging tools and extending a partially given workflow are
common use cases in adapting and reusing existing workflows
in the work context of domain scientists [6]. For each study, we
specially design conversational prompts simulating the interac-
tion between a user working with workflows and ChatGPT. For our
studies, we leverage version GPT-3.5 of ChatGPT [70]. We decided
to use GPT-3.5 since it is openly available to the public and allows
other researchers to reproduce our investigations without addi-
tional incurring costs. Moreover, we provide the chat records in the
Supplementary Material of this article via the GigaScience database
(GigaDB) [71]. Additionally, we develop distinct questionnaires for
evaluating the output of ChatGPT by the domain experts for each
study. While conducting a study, we present a brief overview of
the study’s overall goal and the developed questionnaire to the
experts. Subsequently, the experts complete the questionnaire in-
dependently without the experimenters’ support. This procedure
is intended as participants were not pressured by a time limit and
could freely allocate their time for the study. Furthermore, we in-
tend to avoid a Hawthorne effect, where participants can provide
biased responses due to the presence of observers [72].

Participants

Throughout all experiments, we recruited 1 expert from bioinfor-
matics and 3 experts working on Earth observation workflows.
Using scientific workflows is common in these 2 areas. In bioin-
formatics, scientific workflows are an important tool for enabling
the automation and documentation of complex data analysis pro-
cesses, ensuring reproducibility and transparency in research [40].
In Earth observation, scientific workflows streamline the complex
process of acquiring, processing, and analyzing vast amounts of
satellite and sensor data, enhancing the efficiency and accuracy
of environmental studies [79]. Hence, scientific workflows have
become commonplace in these 2 areas. The professions include
postdocs and PhD students working at universities. All partici-
pants hold a master’s degree in their profession and several years
of experience in their domain. All experts are between 25 and
40 years old (2 female, 2 male).

Scientific workflows

In our study, we consider a total of 5 different workflows. We sum-
marize the used workflows and their details in Table 1. The work-
flows are taken from the work context of the recruited experts,
given their high degree of familiarity and expertise with them. In
bioinformatics, we use 2 workflows that deal with the analysis of
genomic data. First, the crisprseq workflow, sourced from the nf-
core repository [27], a hub for best-practice workflows, focuses on
analyzing and evaluating gene editing experiments utilizing the
CRISPR-Cas9 mechanism for genome engineering. Second, the RS-
STAR workflow, which was implemented by the recruited domain
expert, performs differential gene expression analysis using RNA
sequencing data. The FORCE2NXF-Rangeland and FORCE are 2 im-
plementations of an Earth observation workflow that is concerned
with analyzing long-term vegetation dynamics in the Mediter-
ranean using the FORCE toolkit [80], which provides processing
routines for satellite image archives. The former is implemented
using the Nextflow scientific workflow management system [40,
81] and the latter by leveraging Apache Airflow [38, 82]. The third
Earth observation workflow, called Grasslands, builds on previous
work [83, 84] aiming at understanding differences in long-term
changes in-ground cover fractions specific to European grasslands
depending on the definition of endmembers (i.e., unique spectral
signatures of a specific material or ground cover) approximating
these fractions.

LLM prompting

The choice and design of prompts entered into a LLM has a deci-
sive influence on the output quality [85] and, in our case, on the
suitability of ChatGPT for workflow development and implemen-
tation. Our prompts are organized first to provide the context, of-
ten including the workflow script, followed by the specific ques-
tion or instruction under investigation. Suppose the workflow is
divided into sub-workflows, possibly distributed over several files.
In that case, we first specify the main workflow and then all sub-
workflows and task definitions in the order they occur in the main
workflow. In our research’s initial stages, we experimented with
various alternative prompts for each user study, incrementally
modifying and enhancing them in response to the outcomes we
received. For example, for Study I (i.e., workflow comprehension),
we discovered that ChatGPT tends to describe properties of the
workflow language or technical aspects instead of workflow char-
acteristics. Such phenomena could be resolved by adding explicit
instructions (e.g., “do not explain nextflow concepts”). We refer to
the Prompt Design Challenges section for a detailed discussion
of prompt design challenges. We stopped this adjustment process
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Table 1: Overview of the used workflows. We examine workflows from 2 scientific domains (i.e., bioinformatics and Earth observation)
and 2 workflow systems (Nextflow and Apache Airflow). For each workflow, we report the number of (high-level) steps and used tools
and in which study the workflow is used.

Domain Workflow Description #Steps #Tools Study
Bioinformatics WF1:crisprseq A bioinformatics data pipeline for analyzing 6 9 I
[73] (Nextflow) and evaluating gene editing experiments
utilizing the CRISPR-Cas9 mechanism for
genome engineering.
Repository: [74] (created July 2022)
WEF2:RS-Star The general aim of this workflow is to 5 5 I, 11, 111
(Nextflow) perform differential gene expression
analysis using RNA sequencing data.
Repository: [75] (created November 2021)
Earth observation This workflow analyzes long-term 9 8 I
WF3:FORCE2NXF- vegetation dynamics in the Mediterranean
Rangeland [34] using the FORCE toolkit.
(Nextflow)
Repository: [76] (created November 2020)
WF4:Grasslands This workflow aims at understanding 6 3 I, 111
(Nextflow) differences in long-term changes
(1984-2022) in ground cover fractions
specific to European grasslands.
Repository: [77] (created August 2023)
WEF5:FORCE This workflow focuses on analyzing 8 8 I

(Apache Airflow)

long-term vegetation dynamics in the

Mediterranean using the FORCE toolkit.
Repository: [78] (created February 2021)

after a few iterations as soon as no more of such artificial artifacts
were generated. We have refrained from more extensive prompt
engineering since workflow designers are domain experts from di-
verse fields who cannot be assumed to be specialists in developing
and tuning prompts. However, we acknowledge that the choice of
wording in our prompts influences the results [85]. We discuss the
limitations of our work concerning the chosen study design and
prompt strategy selection in more detail in the Limitations and
Future Work section.

Study I: Workflow Comprehension

In our first study, we investigate the capabilities of ChatGPT in
capturing the actual purpose of a workflow. In other words, we
are prompting ChatGPT to explain the purpose of a workflow. In
this study, we assess ChatGPT'’s quality in comprehending and
explaining a workflow'’s purpose in a user study involving work-
flow experts. Understanding the dataflow and the analysis per-
formed constitutes an important aspect of the daily work with
scientific workflows. On the one hand, workflows are often pre-
cisely adapted to individual research questions, which makes it
challenging even for other experts from the same domain to un-
derstand them. On the other hand, in many research institutions,
an increasing number of legacy workflows whose original authors
and contributors are no longer available for maintaining and re-
fining the codes require taking over by new team members. Un-
derstanding a workflow is usually a prerequisite for adopting and
applying a workflow correctly.

Thus, Study I pursues 3 goals: how well does ChatGPT per-
form on (i) identifying the domain and the overall objective of
the analysis; (ii) reporting the individual computation steps, used
tools, their needed input data, produced output data; and (iii) ex-
plaining research questions for which these analyses are help-
ful given the workflow description. The first 2 parts of the study

have a reconstructive character, whereas the third is more ex-
plorative, requiring ChatGPT to reason beyond the given work-
flow description. We build a set of 5 different prompts to evaluate
ChatGPT’s capabilities concerning the 3 dimensions. When pro-
viding the workflow definition in the prompt, delete all comments
within the definition to prevent information leakage. Table 2 de-
picts the developed prompts. For each workflow, all prompts are
executed in 1 conversation, enabling ChatGPT to use the input
and output of previous prompts as context information. We ask
the domain scientists to evaluate answers given by ChatGPT us-
ing a feedback questionnaire. The complete questionnaire con-
tains 9 items in total and can be found in full length in the ar-
ticle’s Supplementary Material (A). The questionnaire focuses on
the correctness of the prompts regarding the aim of the workflow,
the explanation, and the forecast of addressed research questions.
For 4 of the 9 items, users rate the generated explanations on a 5-
point Likert scale (i.e., 1 = strongly disagree; 5 = strongly agree.). In
addition, 3 items comprise quantitative evaluations of how many
computational steps are correctly detected, how many utilized
software tools and programs are accurately identified, and how
many valid follow-up research questions. The remaining ques-
tion items concern the quality of the explanations of the workflow
sequence, the description of the tools used, and the results pro-
duced. We add a comment field for each item to report issues and
errors in the generated explanations if the domain expert does not
apply the content.

Results

The results of the expert surveys are presented in the following
according to the 3 subcategories of the questionnaire: research
area and the overall aim of the workflow, explanation of workflow
details, and subsequent research questions.
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Table 2: Overview of the used prompts to investigate ChatGPT’s capabilities in capturing the content of a workflow description (Study
I). [workflow-language] and [workflow-text] represent placeholders for the workflow management system (i.e., Nextflow or Apache Airflow)
and the workflow description text. All prompts are executed within 1 conversation.

ID Category Prompt

P1_1 Overall aim The following text contains a scientific workflow written in [workflow-language]:
[workflow-text].

Explain from which research area this workflow originates and describe the general aim
of this workflow. Don'’t explain [workflow-language] concepts.

P1.2 Workflow explanation Explain all individual tasks that are implemented in this workflow. For each task, explain
which software programs or tools are used in this workflow to perform the task. Don't
explain [workflow-language] concepts.

P13 Workflow explanation Explain the type of input data and the format of the input data needed for this workflow.
Don'’t explain the workflow itself.

P14 Workflow explanation Explain the overall result of this workflow. For each individual task of the workflow,
report the type of data that is produced by this task.

P15 Research questions Explain up to 3 research questions for which this workflow is helpful.

Overall aim of the workflow

The first 2 rows of Fig. 2A highlight the rating distribution of the
domain experts concerning ChatGPT’s explanations for the re-
search area and the overall aim of the workflows. The experts
agreed with the explanations generated, indicating a basic un-
derstanding of ChatGPT regarding the different workflows (u =
4.7,0 = 0.68). The lowest agreement, with a score of 4 concerning
the research area and 3 for the overall aim, was recorded in the
evaluation of the WF4-Grasslands workflow. In this case, the expert
could not agree with the explanations mainly due to the wrong in-
terpretation of an abbreviation within the workflow description,
that is, FNF was misinterpreted as “fraction of non-forest” instead of
fold and fill. This misunderstanding resulted in the workflow being
explained as examining forest regions rather than grasslands.

Workflow explanation

In general, the participants regard the quality of the explanations
given by ChatGPT as high (see Fig. 3A, B). All computational steps
are accurately identified in 3 of the 5 workflow descriptions. More-
over, for 4 of these 5 workflows, every tool employed is correctly
detected, but in WF5-Force, 2 of 8 were missing. The detailed de-
scriptions of the tasks and tools provided by ChatGPT were also
judged to be coherent by the experts. Overall, the worst perfor-
mance is achieved with the output for workflow WF4-Grasslands,
for which only 4 of 6 tasks are correctly extracted and only most
of the tools are correctly described. These errors are mainly due to
follow-up errors that result from the incorrect recognition of the
workflow purpose.

The results of the questions items (see Q1_7 and Q1.8 in
Supplementary Material (A)), which assess the produced informa-
tion about the format and type of input and output data of Chat-
GPT, can be seen in the 2 lower rows in Fig. 2A. Similar to the pre-
vious findings, the information generated for 4 of the 5 workflows
are evaluated positively (u = 4.2, o = 1.0). Again, only the pro-
duced information for the workflow WF4 was assessed as neutral
or negative, that is, input description score of 2 (disagree) and data
specification of 3 (neither agree nor disagree).

Research questions

The last query was concerned with explaining up to 3 subsequent
research questions to a given workflow. Figure 2B shows the re-
sult of this question item. ChatGPT achieves only moderate per-
formance, generating just for 1 workflow (i.e., WF2-RS-Star) 3 valid
research questions. In total, out of the 15 generated research ques-

tions, 10 were correct. These figures suggest that ChatGPT offers
only a reduced performance for more explorative tasks.

Study II: Workflow Modification

The second study investigates how much ChatGPT can aid do-
main experts in modifying and tailoring a workflow in our sec-
ond study. Researchers usually do not start from scratch when
developing workflows but typically adapt or reuse parts of existing
workflows from the community [6]. This strategy applies in partic-
ular to biomedicine, in which workflows are more widespread and
have a longer tradition compared to other domains [86]. For exam-
ple, genomic workflows will often be applied to a broad spectrum
of data originating from different sources, each with its distinc-
tive features and characteristics, makingit necessary to adjust the
workflow definition for more efficient data processing. Moreover,
technological advancements, such as in genome sequencing tech-
nology [87], lead to new tools specially developed to leverage the
capabilities of the new technologies. The continuous integration
of new and alternative scientific tools into existing workflows is
essential to conduct state-of-the-art research [88].

In our study, we are particularly investigating the exchange
of used tools in the bioinformatics workflow WF2-RS-Star whose
computational scheme is given in Fig. 1A. We select 2 parts of the
workflow to be modified:

(1)read trimming and filtering (also called read quality control),
originally performed by FASTP [89] and

(2)reference genome indexing and alignment, carried out by
STAR [90].

For assessing the workflow modification capabilities of Chat-
GPT, we build 4 prompts (see Table 3). The first prompt requests
a list of alternative tools for a given workflow step from ChatGPT.
The second and third prompts request the recommendation of
2 alternative tools, including an explanation of the suggestion, a
comparison of the selected tools with the tool originally used in
the workflow script, and their strengths and weaknesses. With the
last prompt, the actual rewriting of the workflow to include the
selected tool is requested. We test the inclusion of 2 alternative
tools per computational task—that is, the prompts P2_3 and P2_4
(see Table 3) are carried out once for each tool from the recom-
mendation. Analogous to Study I, we use a questionnaire for eval-
uating ChatGPT’s output by the biomedical domain expert con-
taining 13 items in total. For most items (9 out of 13), the gen-
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Figure 2: Results from Study I. (A) Rating distribution of the domain experts for ChatGPT’s capability in identifying the research area and overall aim
as well as the input and data description of a workflow. The question item identifier (see Supplementary Material (A)) is given in parentheses for each
row. (B) Number of valid research questions generated by ChatGPT for the different workflows as assessed by the domain experts (question item Q1_9).
We prompted ChatGPT to output up to 3 research questions per workflow.
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Figure 3: Result statistics highlighting the number of correctly identified tasks and tools of a workflow (A) and their explanation (B). We report
separate results per investigated workflow. The results are based on the ratings of the domain experts. Results in (A) correspond to the items Q1_3 and
Q1_5 and in (B) to Q1_4 and Q1_6 of the questionnaire given in the article’'s Supplementary Material (A).

Table 3: Overview of the used prompts to investigate ChatGPT’s capabilities in swapping used tools in bioinformatic workflows (Study
IT). Information in square brackets specifies placeholders for concrete information regarding the workflow or the tool to be replaced.

ID

Category

Prompt

Tool exploration

Tool exploration

Tool exploration

Workflow modification

The following text contains a [domain] workflow written in [workflow-language]:[main-workflow].
The following snippets contain the source code for the step of the workflow which uses [tool] to
perform [step]: [step-source-code]. Please provide a list of 10 alternative tools to perform [tool].
The following text contains a [domain] workflow written in [workflow-language]:[main-workflow].
The following snippets contain the source code for the step of the workflow which uses [tool] to
perform [step]: [step-source-code]. Alternative tools for [step] are: [list-of-tools].

Which of the tools would you recommend as most suitable alternative for [step] in the given
workflow? Please name the two alternatives and give an explanation why these tools are
especially advisable for the given workflow.

[original-tool] and [alternative-tool] are two tools for [step] in [domain] workflows. First, explain the
differences between the tools and the underlying approaches. Second, name strengths and
weaknesses of both tools.

The following text contains a [domain] workflow written in [workflow-language]:[main-workflow].
The following snippets contain the source code for the step of the workflow which uses the
[tool] to perform [step]: [step-source-code)].

Please rewrite the code of the workflow and the process to use [alternative-tool] instead of
[original-tool]. The number of parameters of the individual process descriptions may have to be
adjusted. Please explain features/options of [original-tool] which are not supported in [new-tool].

20z aunr g1 uo 1sanb Aq z/1969//0g09e16/00uUsi08eB16/£601 01 /I0P/3]01E/80uUsi0selIB /w09 dnoolwepese//:sdiy wolj papeojumoq


https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data

8 | GigaScience, 2024, Vol. 13

erated texts and explanations concerning methodical differences
or pros and cons of the tools should be rated on a 5-point Lik-
ert scale. The remaining questions require numerical ratings (2
items), yes/no answers (1), and free text fields (1). Again, we add
a comment field for each item to report issues and errors in the
generated explanations if the domain expert does not fully ap-
ply the content. The complete questionnaire is given in the arti-
cle’s Supplementary Material (B). When conducting the study, we
also provided the generated workflow scripts to the domain ex-
perts and asked them to execute them on their systems. Further-
more, we requested the experts to inspect and correct any non-
functional scripts. For the latter, we set a time limit of 20 minutes
per tool substitution.

Results

The results are presented in the following according to the 2 sub-
categories of the prompts, including the exploration of alternative
tools and workflow modification. We summarize the results of the
2use cases (i.e.,read quality control, reference genome alignment)
and each of the 2 alternative tools when reporting the results.

Tool exploration

When exploring possible alternative tools, ChatGPT showed a
good performance, providing a fully valid list of 10 alternative
tools using prompt P2_1 (see Table 3) for both scenarios. The
generated output list for both tasks can be seen in Fig. 4. How-
ever, the domain expert criticized the alternative tools for refer-
ence genome alignment specified Bowtie [91] and not its succes-
sor Bowtie2 [92]. From these, ChatGPT recommended HISAT? [93]
and Bowtie as alternatives for genome alignment and Trimmo-
matic [94] and Cutadapt [95] for read quality control. According
to the domain expert, all tools are principally valid substitutions,
but Bowtie is a rather inappropriate suggestion since it is not
specialized for RNA sequencing data. The results of explaining
the tools’ methodological differences, and strengths and weak-
nesses can be seen in Fig. 5. Essentially, the generated textual ex-
planations were assessed positively, except when describing the
methodological differences between the tools. In this case, Chat-
GPT could offer a convincing explanation in only 50% of the cases.
In the other cases, the texts were too general, and differences were
not named clearly. In summary, similar to the results from Study
I, ChatGPT solves these rather reconstructive tasks well, reach-
ing an average score of 4.1 (min = 3, max = 5, o = 0.81) when
taking the results from items Q2_3 to Q2_7 (see questionnaire in
Supplementary Material (B)) into account. These results indicate
that ChatGPT could effectively used to explore tools in a given
field.

Workflow modification

We requested ChatGPT to rewrite the workflow script for each of
the 2 recommended alternative tools in both use cases, resulting
in 4 modified workflows in total. Table 4 summarizes the results
achieved. First of all, none of the generated workflow scripts was
entirely correct. Only in 1 of the 4 cases, the generated script was
(at least) syntactically valid (i.e., if replacing FASTP with Trimmo-
matic for read quality control, and the domain expert could exe-
cute it without further adaptations). However, the script was not a
semantically correct modification of the original workflow script
since one particular quality control routine (i.e., PolyG trimming)
was notreflected in the adopted script. This issue also occurred for
Cutadapt, the other alternative tool for quality control. For both
tools, ChatGPT reported in the explanation text that the tools do

not support this feature; however, in reality, they do. This failure
could be interpreted as a kind of LLM hallucination [54]. The sec-
ond task, reference genome indexing and alignment, revealed dif-
ferent issues than the first. Here, the main problem was the cor-
rect linking of the 2 subparts of the task, first the index genera-
tion and then the computation of the actual alignment. For the
former, each tool specifies and uses its distinct data format and
defines how to store the index (e.g., savingitin 1 or multiple files).
However, the storing strategy also affects how the output of the
indexing task has to be passed on to the input of the alignment
computation. In the scripts generated by ChatGPT, the actual step
descriptions to invoke indexing and alignment by the tools were
(generally) valid. However, the linking of these two needed to be
corrected. For example, Bowtie saves its index in multiple files
sharing a common file name prefix, which has to be specified as a
parameter during alignment. However, in the modified script, the
list of all files of a specially created directory was passed to the
alignment process. For Bowtie, this problem could be easily fixed
by the domain expert, but for HISAT?, it was not that trivial and
hence could not be solved in the given time budget of 20 minutes.
To sum up, the study’s results indicate that modifying workflow
scripts poses considerable challenges for ChatGPT as it requires a
detailed understanding of the tool’s idiosyncrasy, the exact com-
putations they perform, and the data formats they use.

Study III: Workflow Extension

In the third study, we investigate the capabilities of ChatGPT in ex-
tending a scientific workflow given a partial script. As discussed in
the motivation for Study II (see Study II: Workflow Modification),
users often reuse parts of existing workflows from the research
community and adapt them to the research question at hand
by enhancing the pipeline with additional analyses and compu-
tational steps [6]. Moreover, data analysis projects are often ex-
ploratory processes, and computation pipelines are incrementally
adapted and extended based on executions and findings from pre-
vious versions of the workflow (e.g., to include additional data cor-
rectness checks, add more differentiated result evaluations, and
provide advanced result visualizations) [96]. In our study, we sim-
ulate this incremental exploration process by taking an existing
workflow and removing n steps at the end of it. We then request
ChatGPT to (i) enumerate the necessary steps to accomplish the
original research goal and (ii) regenerate the next step using the
tool of the original pipeline or by giving a verbal description of
the task. For this study, we select 1 workflow from each research
domain for investigation: WF2-RS-Star for biomedicine and WF4-
Grasslands for Earth observation. The 2 workflows were chosen be-
cause they offer different implementation characteristics; that is,
WF2-RS-Star leverages almost exclusively external tools, whereas
Grasslands relies more strongly on specially implemented R and
Python scripts. Moreover, Study I (see Study I: Workflow Compre-
hension) already showed notable result differences of ChatGPT for
both workflows. By choosing these 2 specific workflows, we aim to
encompass a possibly broad spectrum of performance variations.
We test ChatGPT's workflow extension capabilities in 3 scenarios:
for WF2-RS-Star, we remove the last step, transcript quantification, as
well as the last 2 steps, transcript quantification and format conver-
sion, forming 2 extension scenarios. In the case of WF4-Grasslands,
we remove all steps at the tail of the workflow, including autore-
gressive trend analysis (see schema in Supplementary Material (D)).

Table 5 illustrates the prompts developed for this purpose. This
study uses slightly different prompts (see P3_2a and P3_2b) re-
flecting the different workflow types (i.e., tool vs. script based).
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Alternative Tools for
Reference Genome Alignment

ChatGPT Output:

Here is a list of 10 alternative tools that can be used for reference
genome alignment:

1. Bowtie: A fast and memory-efficient aligner for short DNA sequences.
2. BWA (Burrows-Wheeler Aligner): A popular aligner for mapping DNA
sequences against a large reference genome.

3. HISAT2: A fast and sensitive aligner for spliced alignment of RNA-seq
reads.

4. TopHat: A widely used aligner for RNA-seq reads that incorporates
splice junctions.

5. Subread: A versatile aligner capable of aligning both DNA and RNA
sequences to a reference genome.

6. Salmon: A lightweight aligner specifically designed for accurate
quantification of transcript abundance from RNA-seq data.

7. STAR (Spliced Transcripts Alignment to a Reference): The tool used in
the provided workflow, known for its speed and ability to handle splice
junctions.

8. GSNAP: A general-purpose aligner that allows for highly sensitive and
accurate alignment of short reads against a reference genome.

9. Novoalign: A versatile aligner that supports both DNA and RNA
sequence alignment, offering high sensitivity and accuracy.

10. Segemehl: A read mapper optimized for mapping short reads against
large genomes with a focus on finding splice junctions accurately.

These are just a few examples of the many alignment tools available in
the field of bioinformatics. The choice of tool depends on specific
requirements, such as the nature of the data (DNA or RNA), read length,
presence of splice junctions, and desired performance characteristics.

Alternative Tools for
Read Filtering and Trimming

ChatGPT Output:

Certainly! Here's a list of 10 alternative tools that can be used for read
filtering and trimming in biomedical workflows:

1. Trimmomatic: A popular tool for read trimming, adapter removal, and
quality filtering.

2. Cutadapt: Used for adapter trimming in high-throughput sequencing data.
3. BBDuk: Part of the BBMap package, it offers read trimming, filtering, and
quality control.

4. SeqKit: A fast and lightweight tool for sequence processing, including
read trimming.

5. Trimgalore: Specifically designed for trimming and quality filtering of
lllumina sequencing data.

6. Sickle: Atool that focuses on quality-based trimming of reads from high-
throughput sequencing data.

7. AlienTrimmer: A read trimming tool that uses a statistical approach to
identify and remove adapters.

8. Prinseq: Provides various options for read filtering, trimming, and quality
control.

9. SolexaQA: Offers quality assessment, read trimming, and error correction
for lllumina sequencing data.

10. AdapterRemoval: Specialized for adapter trimming and quality filtering
in paired-end sequencing data.

These tools provide different features and algorithms for read filtering and
trimming, allowing researchers to choose the one that best suits their
specific needs and preferences.

Figure 4: Representation of the output of ChatGPT when requested to provide a list of alternative tools for reference genome indexing and alignment
(left) and read quality control (right) using prompt P2_1. All tools are assessed to be valid by the biomedical domain expert.
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Figure 5: Overview of the rating distribution of the biomedical domain expert for ChatGPT’s capability for explaining alternative tools, methodical
differences, and strengths and weaknesses (S&W) of the tools. The question item identifier (see Supplementary Material (B)) is given in parentheses for

each row.

For the latter, we include additional instructions to (i) spec-
ify the programming language of the script and (i) ask the
domain expert for a verbal description of the computational
steps to be implemented. See Supplementary Material (E) for
the verbal description provided by the Earth observation ex-
pert. The questionnaire for evaluating the generated outputs con-
sisting of 7 items can be found in the article’s Supplementary
Material (C).

The results are presented in the following according to the 2 sub-
categories of the prompts: workflow exploration and extension.

Workflow exploration

For describing further computational steps necessary to accom-
plish a specific research goal given a partial workflow, ChatGPT
showed mixed results. The LLM provides a correct list of suitable
steps in 2 of the 3 scenarios. Also, the tools and methods for im-
plementing the steps suggested by ChatGPT were valid. However,
both domain experts criticize that the specifications for the nec-
essary steps and the proposed tools tend to be rather generic and
generalized. For instance, for extending the WF4-Grasslands work-
flow, the Earth observation expert commented:

Overall, the proposed workflow is very generic and does not provide a
clear roadmap for the analyses. It also proposes to use very simplistic
and often imperfect approaches.
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Table 4: Overview of the results of the workflow modification use case in which the tools performing a specific task are replaced by
alternative ones. For each task, we provide the original tool (in parentheses) and the investigated alternative ones suggested by ChatGPT.
For each combination, we highlight (v = yes, x = no) whether the generated workflow script could be executed (Exec.), whether it is
semantically valid (Val.), and whether it could be fixed within 20 minutes (Fix). For the latter, (v) indicates cases where the script could
be fixed to be executable but not entirely semantically correct. Moreover, we provide excerpts from the domain expert’s comments.

Task Alt. tool Exec. Val. Fix Problems/comments
Read quality Trimmomatic [94] v X ) ® Missing implementation to perform special quality
control control feature (i.e., polyG trimming)

(FASTP [89])
® Invalid description of workflow differences:
- ChatGPT stated that polyG trimming is not
available in Trimmomatic, but it actually is; however,
extra implementation for data adaptation is needed
- Differences of the generated output files not
described accurately

Cutadapt [95] X X ) ® Wrong program call: syntactically incorrect

specification of 2 parameters
® Missing provision of valid adapter sequences
® Invalid description of differences of the workflow
script:
- ChatGPT stated that polyG trimming is not
available in Cutadapt, but it actually is
- Differences of the generated output files not
described accurately

Genome indexing HISAT?2 [93] X X X ® Invalid definition and linkage of input and output

and alignment between genome index generation and alignment

(STAR [90))
® Syntactically incorrect call of the alignment
process
® Does not take parameter strandedness of the input
data into account
® Output files are not generated correctly

Bowtie [91] X X v ® Invalid definition and linkage of input and output

between genome index generation and alignment
® Wrong output definition of genome indexing task

Table 5: Overview of the used prompts to investigate ChatGPT’s capabilities in extending a given partial workflow (Study III). We distin-
guish 2 types of prompts: workflow exploration and workflow extension. For the latter, we developed 2 variants specially designed for
tool-based (P3_2a) and script-based (P3_2b) workflows.

ID Category Prompt

P3_1 Workflow exploration The following text contains a [domain] workflow written in Nextflow: [workflow-description].
The workflow should be used to [overall-goal]. Which steps are missing in order to perform
[overall-goal]? Please specify only the absolutely necessary steps. For each step name up to
three [domain] tools that can be used to perform the task.

P3_2a Workflow extension The following text contains a [domain] workflow written in Nextflow: [workflow-description].
Please extend to the given workflow to include one further step which [step-description] using
[tool]. Please specify the new process description in a file at [file-name]. Please use version 2 of
the Nextflow workflow language. The new process should take the output of [predecessor-step] as
input.

P3_2b Workflow extension The following text contains a [domain] workflow written in Nextflow: [workflow-description].
Please extend to the given workflow to include one further task which performs [step] using an
[programming-language] script. For this, please generate an [programming-language] script, stored
in [script-file-name], which performs the following computations: [verbal-task-description].
Next to the [programming-language] script generate the Nextflow process description in a file
named [process-file-name] and the updated workflow. Please use version 2 of the Nextflow
workflow language. The new process should take the output of [predecessor-step] as input.

Overall, the results confirm the findings from the 2 previous Workflow extension
studies that ChatGPT shows weaknesses in more exploratory Using the prompts P3_2a and P3_2b (see Table 5), we request
tasks. ChatGPT to reconstruct the last removed computational step in
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each extension scenario. Table 6 summarizes the results achieved.
Like the results from Study II, ChatGPT shows considerable weak-
nesses in the automatic extension of workflows. None of the gen-
erated workflow scripts was executable without the intervention
of the domain expert. A clear difference is revealed when com-
paring the 2 domains, biomedicine and Earth observation. In the
former case, the generated workflow scripts are (at least) of such
a quality that the domain expert could successfully correct them
within 20 minutes. In the generated scripts, mainly syntactical er-
rors occurred (e.g., incorrect usage of variable identifiers, incom-
plete input definitions, or missing specification of parameters),
which could be easily corrected. However, the calls to the respec-
tive programs to perform the 2 tasks were correct.

In contrast, the generated extension for WF4-Grasslands was of
considerably lower quality. In this case, several syntactic and se-
mantic errors occurred (e.g., the script uses a non- library func-
tion, no parallelization code is included, and not all requested
computations are performed). In this state, the domain expert
could not resolve the large number of problems within 20 min-
utes. However, when interpreting these results, one must remem-
ber that the task in this scenario is also significantly more difficult.
Instead of a short task description and specification of a tool to be
used, ChatGPT has to design and generate the source code for a
complex data analysis procedure containing multiple substeps.

Discussion

We conducted 3 studies to investigate the capabilities of using
ChatGPT for comprehending, modifying, and extending scientific
workflows. We discuss our methodology and the results in the fol-
lowing.

Comprehending scientific workflows

Study I was designed to answer RQ1 by evaluating ChatGPT’s
performance in comprehending existing workflows. The domain
experts assessed that ChatGPT is good at this task while show-
ing slight differences between the investigated research domains.
In particular, the explanations for workflow WF4-Grasslands re-
vealed considerable performance drops. Unlike the other work-
flows investigated, this one uses multiple proprietary R and
Python scripts instead of leveraging external tools for assembling
data-processing pipelines. The lack of standardized tools makes
workflow comprehension more challenging since ChatGPT has to
interpret complex processing logic and has fewer possibilities to
leverage static information, like the description of the general pur-
pose of an established bioinformatics tool, seen through its train-
ing while generating the response. In addition, code quality and its
readability may strongly influence the results for workflows con-
taining proprietary scripts. For instance, one major problem while
explaining WF4-Grasslands in Study I was the misinterpretation of
the abbreviation “fnf” as “fraction of non-forest” instead of “fold and
fill.” Such customized and ambiguous terms challenge LLMs and
reduce their applicability.

In an ablation experiment, we replaced all abbreviations in WF4
with their complete form and regenerated the explanations of
prompt P1_1, requesting the overall purpose of the workflow. Hav-
ing access to the full forms in the script, ChatGPT’s output was
much better, even if the exact goal of the workflow was still only
met on a rather abstract level:

aimed at extracting detailed information about land cover dynamics,
vegetation phenology, and environmental changes in a specific region
using satellite data.
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We also did a reverse experiment using WF2-RS-Star by replac-
ing all full-form task names with abbreviations in the workflow
script (but keeping the name of the tools called fixed). In this case,
the results did not change considerably, highlighting the stronger
robustness of ChatGPT against such changes.

Modifying scientific workflows

We answer RQ2 in Study II by evaluating the modification per-
formance of ChatGPT. To this end, we requested the LLM to sub-
stitute the leveraged tools for 2 computational tasks, read qual-
ity control and reference genome alignment, in the biomedical
workflow WF2-RS-Star. The study results suggest that ChatGPT
can effectively explore and explain alternative tools in the field,
possibly shortening the time the experts spend searching for suit-
able replacements on the web. In contrast, the results also indi-
cate that ChatGPT rather poorly supports the generation of work-
flow scripts for using these alternative tools. In only 1 scenario
(i.e., substituting FASTP with Trimmomatic), the produced script
could be run without syntactical errors, and in one other sce-
nario (i.e., replacing STAR with Bowtie), the script could be fixed
within 20 minutes to be syntactically and semantically valid. In
the used version of ChatGPT and the selected setup, an increase
in efficiency cannot be recorded or anticipated, highlighting the
need for further research efforts. However, when interpreting the
results, it is essential to remember that ChatGPT is a general-
purpose LLM rather focusing on human language. A potential op-
tion for improvement could be testing generative models more
strongly adapted to programming code, such as GitHub Copilot
or Code Llama [19]. Moreover, alternative prompting strategies,
which adapt the workflow iteratively, could help avoid errors (e.g.,
when linking the source code of existing tasks with the new task
descriptions). We refer to the discussion of other prompting solu-
tions in the Limitations and Future Work section. We emphasize
again that workflows and the development of tools in bioinfor-
matics, particularly in the field of genomic analyses, are based
on a more extended history and have established more robust
and more widely used software than other scientific fields. Ac-
cordingly, it is reasonable to infer that the outcomes, such as for
suggesting alternative tools, reflect an upper boundary of qual-
ity, suggesting that encountering difficulties is more likely in less
explored application areas due to insufficient data availability.

Extending scientific workflows

Finally, we investigate RQ3 by conducting Study III. To this end, we
requested ChatGPT to extend an existing (partially given) work-
flow to achieve specific goals. The study results confirm the find-
ings from the 2 previous studies and emphasize ChatGPT’s dif-
ficulties in solving more complex and exploratory problems. In
this case, explaining the necessary steps to answer the given re-
search questions and the generation of the workflow script for the
next step offered (partly) severe issues. Similar to the results of
Study I, the picture is mixed regarding the different research do-
mains, Earth observation and bioinformatics. For the latter, the
generated scripts form a relatively good basis for the implemen-
tation, having only (minor) syntactical issues that the expert could
quickly fix. In contrast, in the case of Earth observation, the script
quality was considerably worse, hindering a fast correction by the
expert. These results imply that efficient user support is possi-
ble for pipelines mainly leveraging external tools. However, fur-
ther research is necessary to investigate user-support strategies
for workflows applying specially implemented analysis scripts.
Specifically, human-in-the-loop approaches that involve human
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Table 6: Overview of the results of the workflow extension use case in which we provide ChatGPT a partial workflow and request the
LLM to extend it by 1 further computational step. For each investigated use case, we highlight (v = yes, x = no) whether the generated
workflow script could be executed (Exec.), whether it is semantically valid (Val.), and whether it could be fixed within 20 minutes (Fix).
For the latter, (v) indicates cases where the script could be fixed to be executable but not entirely semantically correct. Moreover, we

provide excerpts from the domain expert’s comments.

Workflow Task/Tool Exec. Val. Fix Problems/comments
WEF2-RS-Star Transcript X X v ® Syntax errors: process definition for CUFFLINKS
quantification/Cufflinks declares 1 input channel but 2 were specified
[99]
® Input tuple does not match input set cardinality
declared by process definition
® Wrong variable name: sorted_bam (wrong) instead
of sample_bam
Format X X v ® Syntactical errors: usage of wrong variable name

conversion/SAMtools

[100]

WF4- Grasslands AR analysis/R script X X

(sample_sam)

® Incorrect syntax for connecting the new task to the
previous one SAMTOOLS(STAR_ALIGN.sample_sam)
(wrong) vs.
SAMTOOLS(STAR_ALIGN.out.sample_sam) (correct)

X ® Input to the R script is a path to a directory, not a
TIFF file
® Incorrect use of remotePARTS library: there is no
function called autoTrend in this package
® Calculation needs to be parallelized (as specified in
the request)
® Computation should be implemented for 4 types of
inputs: GV, NPV, SOIL, and SHADE
® Desired outputs from the AR model need to be
retrieved and written out (missing)
® Script declares a Conda environment (Python), not
R environment

experts more closely in the code generation process could also be
helpful here (see Limitations and Future Work section).

Scientific workflows in LLM training data

LLMs are trained on large amounts of textual data from the web,
including programming code and workflow scripts [43]. There-
fore, it is crucial to consider whether and to what extent an LLM
was already able to access the workflow scripts of our study dur-
ing its pretraining. According to public information [97], Chat-
GPT was trained on data gathered until September 2021, mean-
ing that initial versions of 2 of the 5 tested workflows (i.e., WF3-
FORCE2NXF-Rangeland and WF5-Force) could have been part of the
LLM’s training routine. However, the specific training dataset used
for ChatGPT is not accessible to the public, preventing a conclu-
sive assessment. To attain a more precise estimate of the po-
tential number of workflow scripts within the training data in
general, we initiated searches for scientific workflow repositories
on GitHub. We leverage the repository search engine of the web-
site [98] and use the names of 4 widely used workflow manage-
ment systems (i.e., Apache Airflow, Nextflow, Snakemake, and Tav-
erna) as a query term. We filter all repositories with creation data
less than 1 September 2021 from the query results. Of course, the
results must be interpreted carefully since not every repository
containing the name has to deal with scientific workflows, even
if the names are very peculiar. Detailed statistics from our search
results can be found in this article’s Supplementary Material (F).
As of September 2021, there were between 352 and 1,900 reposi-
tories containing one of the workflow system names in their de-

scription. Moreover, the results highlight the increasing popularity
of workflows since, for all systems except for Taverna, the num-
ber of repositories has almost doubled over the past 2 years. We
also checked the number of Nextflow pipelines available in nf-
core. As of September 2021, 35 pipelines were published, and 19
were under development [27]. Today, nf-core hosts 55 published
pipelines and 33 in development. In summary, we can hypothe-
size from these results that ChatGPT can likely rely only on a rela-
tively small base of workflow scripts during its training compared
to classical programming code (e.g., GitHub currently hosts over
3.9 million Java and over 2.2 million Python repositories, which
we determined by using GitHub repository search and the search
queries “language;Java” and “language:Python,” making user support
for workflow design and implementation particularly challeng-
ing).

Prompt design challenges

While creating prompts for the studies, we identified several chal-
lenges and issues that arose while interacting with ChatGPT.

Representation of workflows

For the representation of the workflow scripts, there is no straight-
forward option on how to include them in a prompt. The workflow
descriptions are often spread over several files containing sub-
workflows and task descriptions. In our approach, we first spec-
ify the main workflow and then all sub-workflows and task de-
scriptions in order of occurrence. However, there might be other,
more efficient prompt solutions (with respect to the generative
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language model). Furthermore, the workflow scripts might exceed
the maximum allowed input length of the language model (e.g.,
ChatGPT variants allow only for 4,000 to 16,000 words/tokens [97]
in the input sequence). In particular, workflows heavily relying on
specially implemented scripts having hundreds of code lines will
face this issue.

Loss of focus

Some of the prompts are very long due to the specification of the
entire workflow script, which challenges ChatGPT to maintain fo-
cus. Adding additional instructions to the prompt helped to avoid
or reduce this phenomenon; for example, for the explanation use
case (Study I), we added to the prompt “Don’t explain nextflow con-
cepts” (see P1_1 and P1_2 in Table 2) and “Don’t explain the work-
flow itself” (P1_3) to prevent ChatGPT generating outputs describ-
ing features of the workflow management system or the complete
workflow when requesting input data specification.

Technological details

In some cases, adaptation to technological details of the specified
workflows was necessary. For example, the Nextflow system of-
fers 2 language versions for describing processing pipelines. The
Nextflow workflows in our study all used the new version of the
language. However, when extending workflows in Study 111, we had
to specify the desired version (see P3_2 in Table 5) to get the cor-
rect output. This observation is surprising since the partially given
workflow is already in the respective version. Interestingly, this
was only necessary for the workflow extension but not for their
modification (P2_4 in Table 3) in which the phenomena did not
occur.

In summary, the efficient and effective formation of prompts
offers a wide range of possible solutions. In our study, we iden-
tified initial clues and difficulties, but further research is needed
to detect further potential for improving the interaction between
domain experts and ChatGPT and generative LLMs in general.

Limitations and future work

In the following, we highlight the limitations of this work that
merit further research.

Study design

In each of our 3 studies, we created and provided the prompts for
testing ChatGPT's capabilities concerning the different use cases,
and the domain experts only evaluated the outputs of ChatGPT,
leading to a rather indirect interaction between the domain sci-
entist and the LLM. An alternative design for the study would
be to have the experts interact directly with ChatGPT by devel-
oping and refining the prompts independently. In addition to as-
sessing the capabilities of ChatGPT, this would have the advan-
tage of gaining initial insights into interaction forms and patterns
of the different experts with ChatGPT. Moreover, this would al-
low for improved customization of the prompts to the particular
research domain and the idiosyncratic properties and character-
istics of each workflow. Extended optimization of the prompting
strategy by the domain scientist could lead to better results but re-
duce potential time savings in solving the actual task. Our study
design was motivated by the fact that the experts had strongly
limited time budgets for the study. For example, even for evaluat-
ing ChatGPT’s outputs in Study [, the experts already needed up to
3 hours to accurately check the generated explanations. A study
design that envisages direct interaction involves high efforts in
terms of introduction and explanation to ChatGPT and prompt-
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ing strategies for the domain scientists, thus limiting the scope of
research questions that can be investigated. In addition, the se-
lected study design has the advantage of using the same prompts
for the different domains, which contributes to better compara-
bility of the results and eliminates the influence of differences for
individual prompt differences.

In our study, we focused solely on ChatGPT as generative lan-
guage model. However, there are many other general-purpose
models available (e.g., PaLM-2 [45], Gemini [101], or Llama-2 [19])
as well as models more specially designed for programming tasks
(e.g., GitHub Copilot, Code Llama [102], or OpenAl Codex [103])
publicly available and worth investigating. Furthermore, recent
research showed that placebo effects can undermine the validity
of study results when user expectations are altered through the
presence of an artificial intelligence [104-106] (i.e., LLM) or a novel
superior technology [107, 108] that improves user capabilities. Our
studies only highlight the results of ChatGPT in the version used
(GPT-3.5) but do not claim generalizability for other LLMs. In fu-
ture work and in the case of using LLMs, placebo conditions must
beincluded to avoid findings that are not a result of increased user
expectations toward the capabilities of ChatGPT.

Proprietary and closed-source LLMs

While ChatGPT and other proprietary LLMs offer remarkable nat-
ural language understanding and generation capabilities, they
have inherent limitations that can hinder their utility in scientific
workflow development. One significant limitation is their lack of
transparency in their underlying algorithms and training data, re-
stricting results’ direct reproducibility and interpretability. Users
typically interact with these models through an application pro-
gramming interface or web application provided by the company
or organization that developed it rather than having direct ac-
cess to the underlying code or data, which often makes it impos-
sible to trace any changes to the model and, thus, to the results
achieved. Moreover, the closed nature of these models restricts re-
searchers’ ability to customize or fine-tune them for specific tasks,
limiting their adaptability to diverse research domains. An alter-
native is using freely available, open-source LLMs, like BLOOM [20]
or LLaMA [19], where users have more control over model changes.
Nonetheless, the data basis and training procedure are often not
fully transparent, even with these models. Moreover, it is essential
to note that running such models demands substantial computa-
tional resources and the corresponding technical expertise.

Prompting strategy

Next to other models, the prompts used in our studies also consti-
tute a limiting factor. We cannot exclude the possibility that other
prompts, using a different structure or wordings, may achieve bet-
ter results for the investigated use cases. Moreover, in our ap-
proach, we used only the workflow description’s source code, with-
out comments, to form the prompt. There are several strategies
for enriching the prompt with additional context information,
which can lead to improved results. For instance, including avail-
able documentation artifacts of the workflow, for example, de-
scriptive texts in the source code repository or the publication
introducing (parts of) the workflow, may ease the processing of
the text. Similarly, utilizing descriptions or manuals for the tools
employed could also contribute to better results.

In addition, the prompts for individual aspects of the work-
flows could be revised to obtain more differentiated results. For
instance, the prompts for exploring alternative tools (see P2_1
and P2_2 in Table 3) could be extended to request further semi-
structured information, such as the programming language used,
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software license, release date, and development history, guid-
ing the tool selection process. Information on the development
history, for example, could help domain experts differentiate
between well-established, trusted tools and new developments.
This would additionally enhance result interpretation since there
might be limited information available for recent advancements,
potentially leading to their (yet) insufficient representation in the
LLM.

Furthermore, our approach is based on a linear prompt ex-
ecution without feedback or revision opportunities. Iterative
prompting strategies, such as chain-of-thought [109] or graph-of-
thoughts prompting [110], self-debugging [111] or self-adapting
approaches [112], can potentially enhance results. These strate-
gies offer dynamic interaction approaches with LLMs, enabling
continuous improvement and adaptation of responses through
successive refinements. This facilitates, for example, the correc-
tion of errors encountered during workflow modification and ex-
tension, such as syntax errors in tool invocation, data format mis-
matches, or invalid task linking, by utilizing the LLM output as
input for the subsequent iteration. In addition to other techni-
cal possibilities of the LLM conversation, prompt customization
and adaptation by human experts offer strong potential for im-
provement [113, 114]. Using such human-in-the-loop approaches
allows for explicitly addressing the observed problems, especially
in workflow modification and expansion, in a semi-automatic pro-
cess.

Stochastic generation

In addition to alternative prompting strategies, it should be em-
phasized that the generated texts are subject to stochastic sam-
pling processes, which can lead to deviations even when reusing
the exact same prompts multiple times. In most LLMs, the influ-
ence of this phenomenon can be managed using the temperature
hyperparameter, which regulates how the model samples the next
word by adjusting the probability distribution. Higher tempera-
ture values soften the distribution, leading to more diverse and
creative outputs, allowing the model to explore a broader range
of possibilities. On the other hand, a lower temperature tends to
produce more conservative and predictable outputs, as the model
is more likely to choose tokens with higher probabilities. Thus, the
parameter serves as a knob to adjust the balance between explo-
ration (generating diverse outputs) and exploitation (producing
more likely outputs). An extensive investigation of the parame-
ter’s influence represents an interesting future research question.

Limited number of domain experts

In the context of our studies, only 4 domain experts evaluated the
outputs of ChatGPT. In some cases, generated explanations were
assessed by one person only (e.g., Study II). This low number of
experts limits the validity and generalizability of the results and
offers the risk of subjective bias. However, recruitment for such
studies is difficult because the number of potential participants is
small and they often have strongly limited time budgets, making
study design challenging. Please note that for experts in the field,
even “just” familiarizing themselves with an unfamiliar workflow
is a challenging and time-consuming endeavor.

Investigated domains and selected workflows

Our study explores real-world workflows from the 2 domains,
bicinformatics and Earth observation. Of course, these only rep-
resent part of the full range of workflows in the natural sciences.
It constitutes an exciting follow-up research question: how suit-
able ChatGPT and other generative LLMs are in other research

contexts, such as climate research [33] and astronomy [32], and
whether it is possible to identify categories or groups of domains
that are particularly well (or poorly) supported. Furthermore, we
examined only 2 workflow systems, Nextflow and Apache Airflow,
leaving other alternatives, such as Snakemake, Taverna, and Pe-
gasus, for future work. Investigating other workflow systems is es-
pecially interesting because they specify different languages with
different complexity levels and support features for designing
analysis pipelines. For example, the language of Apache Airflow,
which prioritizes flexibility and extensibility through its integra-
tion with the general-purpose programming language Python, ex-
pands the potential output scope compared to more determinis-
tic languages such as the Common Workflow Language [115, 116].
Consequently, this increased variability likely poses considerable
challenges for LLMs. For this, a thorough analysis of how the id-
iosyncrasy of the leveraged workflow language influences the out-
comes produced by LLMs would be beneficial in offering guidance
to practitioners.

Explored use cases

This work focused on comprehending, modifying, and extending
workflows with ChatGPT. These use cases represent only a partial
scope of user support opportunities, and it is worth considering
and evaluating other use cases. For instance, migrating workflows
implemented in legacy workflow management systems to more
recent ones (e.g., transforming Taverna [86] scripts to Snakemake
or Nextflow) or adapting them to different infrastructure stacks
poses an interesting research question. Moreover, user support in
workflow debugging, error identification, or optimization, as done
in classical programming [62], would be a valuable contribution
to research scientists.

Conclusion

The significance of large-scale data analysis workflows in advanc-
ing research in the natural sciences is growing steadily. Devel-
opers of such workflows, primarily researchers from diverse sci-
entific fields, are challenged with the increasing complexity and
scale of their analyses, which involve (next to their domain knowl-
edge) working with different frameworks, tools, programminglan-
guages, and infrastructure stacks. Although a few tools for creat-
ing and maintaining workflows are available, improving user effi-
clency remains an open research area. In this work, we contribute
to this situation by evaluating the suitability of ChatGPT for com-
prehending, modifying, and extending scientific workflows. In 3
user studies with 4 researchers from different scientific domains,
we evaluated the correctness of ChatGPT regarding explainability,
exchange of software components, and extension when provid-
ing real-world scientific workflow descriptions. Our results show a
high accuracy for comprehending and explaining scientific work-
flows while achieving a reduced performance for modifying and
extending workflow descriptions. These findings clearly illustrate
the need for further research in this area.

Additional Files

Supplementary Material. Complete questionnaires for user stud-
ies I-1II, schema of workflow WF4-Grasslands, verbal task descrip-
tion for user study III, and statistics of the GitHub search results.
Supplementary Fig. S1. Overview of the Earth observation work-
flow WF4-Grasslands developed by one of the domain experts. The
workflow aims at understanding differences in long-term changes
(1984-2022) in ground cover fractions specific to European grass-

20z dunr gL uo 1sanb Aq z/1969//0c09e1b/e0us1osebib/g601 0 L/10p/a]o1ue/2ousiosebif/woo dno-olwapese//:sdiy wouy papeojumoq



Using ChatGPT as large language model for scientific workflow development | 15

lands depending on the definition of endmembers (i.e., unique
spectral signatures of a specific material or ground cover) ap-
proximating these fractions. The figure highlights the conceptual
schema and dataflow of the workflow.

Supplementary Table S1. Feedback form for the first user study
that investigates the capabilities of ChatGPT to capture the con-
tent of a workflow description. For each item, we added a com-
ment field to report issues and errors in the generated explana-
tions if the domain expert does not fully apply the content.
Supplementary Table S2. Feedback form for the second user
study that investigates the capabilities of ChatGPT in exchanging
the used tools in a scientific workflow. For each item, we added a
comment field to report issues and errors in the generated expla-
nations if the domain expert doesn'’t fully apply with the content.
Supplementary Table S3. Feedback form for the third user study
that investigates the capabilities of ChatGPT to extend a given
(partial) workflow script. For each item, we added a comment field
to reportissues and errors in the generated explanations if the do-
main expert doesn'’t fully apply with the content.
Supplementary Table S4. Statistics of the search results for 4 dif-
ferent scientific workflow systems using the GitHub search engine.
For each system, we use the system name as search term and re-
strict the result repositories to be created before the date give by
the column (group).
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