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Abstract 

Bac kgr ound: Scientific w orkflow systems ar e incr easingl y popular for expr essing and e xecuting comple x data anal ysis pipelines ov er 
large datasets, as they offer r e pr oducibility, de penda bility, and scala bility of anal yses by automatic parallelization on large compute 
clusters. How ever, implementing w orkflows is difficult due to the inv olv ement of many black-box tools and the deep infrastructure 
stack necessary for their execution. Simultaneously, user-supporting tools are r are , and the number of available examples is much 

lower than in classical programming languages. 

Results: To address these c hallenges, w e investigate the efficiency of large language models (LLMs), specifically ChatGPT, to support 
users when dealing with scientific workflows. We performed 3 user studies in 2 scientific domains to evaluate ChatGPT for com- 
prehending, adapting, and extending workflows. Our results indicate that LLMs efficiently interpret workflows but achieve lower 
performance for exchanging components or purposeful workflow extensions. We c har acterize their limitations in these challenging 
scenarios and suggest future resear c h directions. 

Conclusions: Our results show a high accuracy for comprehending and explaining scientific workflows while achieving a reduced 

performance for modifying and extending workflow descriptions. These findings clearly illustrate the need for further resear c h in 

this area. 

Ke yw ords: lar g e languag e models, scientific workflows, user support, ChatGPT 
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Key points: 

� We explore large language models (LLMs) to support 
users who de v elop scientific w orkflo ws. 

� We are the first to conduct user studies involving domain 

experts. 
� We conduct 3 studies to assess LLMs in scientific work- 

flow compr ehension, ada ptation, and extension. 
� Our results indicate that LLMs efficientl y inter pr et work- 

flows. 
� Our results show room for improvement regarding com- 

ponent adaptation and w orkflo w extension. 

Introduction 

Large-scale data analysis pipelines (also known as scientific work- 
flows) are crucial in driving research advances for natural sci- 
ences [ 1 ]. They are pivotal in acceler ating lar ge and complex 
data analysis on distributed infrastructures and offer essential 
featur es, suc h as r epr oducibility and dependability [ 2 ]. In bioin- 
formatics , for instance , scientific w orkflo ws are analyzing the 
ter abyte-lar ge datasets pr oduced b y modern DN A or RN A se- 
quencing machines in a wide variety of experiments [ 3 ], thereby 
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iding in building a compr ehensiv e understanding of biolog-
cal processes and human diseases. Bioinformatics w orkflo ws 
ypically include many individual computational steps, such as 
ata pr epr ocessing, extensiv e quality contr ol, a ggr egation of r aw
equencing data into consensus sequences, machine learning–
ased tasks for classification and clustering, statistical assess- 
ents, and result visualization. Each step is carried out by a spe-

ific pr ogr am, typicall y not written b y the w orkflo w de v eloper but
xchanged within a worldwide community of researchers [ 4 ]. Ex-
cution of a w orkflo w on a distributed infr astructur e , in principle ,
s taken care of by a workflow engine; howe v er, the idiosyncr asies
f the different infrastructures (e.g., file system, number and fea-
ures of compute nodes, applied resource manager, and scheduler) 
ften r equir e w orkflo w users to tune their scripts individually for
 v ery ne w system [ 5 ]. 

Ho w e v er, typical de v elopers of w orkflo ws ar e r esearc hers fr om
eterogeneous scientific fields who possess expertise in their 
 espectiv e domains but often lack in-depth knowledge in soft-
ar e de v elopment or distributed computing. They often en-

ounter difficulties understanding the complex implementa- 
ions of exchanged codes and the deep infr astructur e stac k
ecessary for their distributed execution. This situation chal- 

enges efficient w orkflo w implementation and slo ws do wn or
inders data exploration and scientific innovation processes [ 6 ].
 Open Access article distributed under the terms of the Cr eati v e Commons 
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onsequentl y, low human pr oductivity is a significant bottle-
eck in the creation, adaption, and interpretation of scientific
 orkflo ws [ 7 ]. 
P ar allel to this, there is a well-established field in human–

omputer interaction focusing on assisting end-user program-
ers and software development, as highlighted by previous
ork [ 8–11 ], to reduce the perceived cognitive workload and im-
r ov e the ov er all pr ogr ammer performance [ 12 ]. Researc h in this
eld includes pr ogr amming-by-demonstr ation [ 13 , 14 ], visual pro-
ramming [ 15 , 16 ], and natural language instructions [ 17 ]. Recent
ork in this area particularly investigated prospects of general-
ur pose lar ge langua ge models (LLMs), suc h as ChatGPT [ 18 ],
LaMA [ 19 ], and Bloom[ 20 ], for supporting end-user pr ogr am-
ing [ 21–23 ] and software development in general [ 24 , 25 ]. For

nstance, Bimbatti et al. [ 21 ] explore using ChatGPT to enhance
atur al langua ge understanding within an end-user de v elopment
nvironment, assisting nonexpert users in developing programs
or collabor ativ e r obots. Mor eov er, White et al. [ 24 ] introduce
rompt design techniques for automating typical software engi-
eering tasks, including ensuring code independence from third-
arty libraries and generating an application programming in-
erface specification from a list of requirements. Surameery and
hakor [ 25 ] evaluate LLMs for supporting code debugging. How-
 v er, r esults fr om suc h studies, whic h focus on standard pro-
r amming langua ges, cannot easil y be tr ansferr ed to w orkflo w
ystems. Workflow scripts mostly call external tools with agnos-
ic names and have little recognizable control structures or pro-
ected k e yw or ds . Publicly a v ailable examples ar e scarce; for in-
tance, the comm unity r epository of the popular w orkflo w system
extflow [ 26 ] curr entl y offers onl y 55 r eleased w orkflo ws [ 27 ]. Fur-

hermore, w orkflo ws can only be understood when the distributed
ystem underlying their execution is considered, creating depen-
encies m uc h differ ent fr om usual pr ogr ams. Mor eov er, studies

nvestigating how LLMs support users in data science—the field
n which w orkflo ws are applied extensively—do not address the
nique c har acteristics of scientific w orkflo ws either and are lim-

ted to theoretical considerations [ 28 , 29 ]. Practical studies, espe-
ially those involving real users, are badly missing. 

In this w ork, w e address these shortcomings b y describing
 user studies in 2 different scientific fields (biomedicine and
arth observation) that evaluate the suitability of ChatGPT for
omprehending, modifying, and extending scientific w orkflo ws.
pecificall y, we e v aluate the corr ectness of ChatGPT r egarding
xplainability, exc hange of softwar e components, and extension
hen providing real-world scientific workflow scripts. Our results

how a high accuracy for comprehending and explaining scientific
 orkflo ws but reduced performance for modifying and extending
 orkflo w scripts . T he domain experts positiv el y assessed the ex-
lainability in qualitative inquiries, emphasizing the time-saving
apabilities of using LLMs while engineering existing w orkflo ws.
v er all, our work indicates that gener al-pur pose LLMs hav e the
otential to impr ov e human performance when anal yzing com-
lex scientific w orkflo ws. 

ac kgr ound 

r e vious r esearc h inv estigated how r elated domains, suc h as pr o-
ramming, can be augmented using interactive technologies [ 11 ,
0 ]. In contrast to programming, where applications use a single
r ogr amming langua ge and ar e often executed on a single sys-
em, scientific w orkflo ws combine multiple softw are artifacts on
istributed stacks for advanced data processing. We ground the
eader by providing a literature review about scientific w orkflo ws
nd intr oducing lar ge langua ge models, including their utility to
acilitate the creation of software artifacts. 

cientific w orkflo ws 

cientific w orkflo ws ar e widel y used by div erse r esearc h com-
 unities, suc h as biomedicine [ 31 ], astronomy [ 32 ], climatology

 33 ], and Earth observation [ 34 ], to manage the dataflow and dis-
ributed execution of complex anal yses, sim ulations, and experi-

ents. A scientific w orkflo w comprises a series of interconnected
omputational steps, often with diverse patterns of dependencies,
hat define how to process and analyze data to reach a particu-
ar r esearc h objectiv e. Scientific w orkflo ws can be regarded as di-
 ected acyclic gr a phs in whic h the nodes r epr esent computational
asks or operations and edges model dependencies or dataflow
etween these tasks. An edge from one node to another signifies
hat the output of the first task is used as input for the second
 35 ]. For example, Fig. 1 A illustrates the computational steps, the
ools, and the dataflow of a bioinformatics workflow for perform-
ng differential gene expression analysis. During w orkflo w execu-
ion, a single computation step often involv es m ultiple pr ocesses,
hic h ar e typicall y executed in a distributed fashion on different
achines and batches of the input data, resulting in a much more

omplex execution gr a ph. Consequentl y, scientific w orkflo ws help
acilitate the r epr oducibility and tr aceability of data anal yses by
xplicitly outlining the steps and parameters involved [ 36 ]. Fur-
hermore, they allow for automation, scaling, and optimization of
omputational pr ocesses, whic h is especiall y critical in disciplines
ealing with large datasets [ 37 ]. The increasing importance of sci-
ntific w orkflo ws for scientific pr ogr ess has led to a growing inter-
st in de v eloping mor e user-friendl y tools and methods thr ough
he r esearc h comm unity. Scientific w orkflo w management sys-
ems, like Apache Airflow [ 38 ], Galaxy [ 39 ], Nextflo w [ 40 ], P ega-
us [ 41 ], and Snak emak e [ 42 ], are specifically developed to sup-
ort users in designing and executing scientific w orkflo ws in var-

ous aspects. Key features of such management systems typically
nclude w orkflo w design and composition, (distributed) w orkflo w
xecution and sc heduling, pr ov enance tr ac king, r ecov ery and fail-
re handling, and resource management [ 36 ]. Fig. 1 B highlights
he implementation of the example w orkflo w as well as a single
omputational step (see Fig. 1 C), that is, r efer ence genome align-
ent using the STAR toolkit in Nextflow. 
Scientific w orkflo ws ar e often r eused and adopted for complex

ata analysis [ 6 ]. Most of the time, users of scientific w orkflo ws
r e unawar e of the w orkflo w’s internal functionality and techni-
al details. Instead, users of scientific w orkflo ws r epr esent domain
xperts, such as mathematicians, physicians, or bioinformatics,
ho are experts in their respective domains but not necessarily in
r ogr amming and inter pr eting scientific w orkflo ws. Existing sci-
ntific w orkflo ws are implemented and maintained b y persons
ther than the domain user. This reduces the direct interaction
ith scientific w orkflo ws to a minim um, wher e domain experts
nly hand in the input data and evaluate the output data. Conse-
uently, domain experts using a w orkflo w often do not have the
nowledge to modify, extend, or inter pr et the details of scientific
 orkflo ws. 

arge language models 

angua ge models, suc h as BERT [ 43 ], GPT-3 [ 44 ], Bloom [ 20 ], and
aLM-2 [ 45 ], build the foundation of many recent advancements
n natural language processing and understanding. These models
ave billions of parameters and are generally pretrained on vast
ets of texts from the web and other repositories, enabling them to
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Figure 1: Example bioinformatics workflow for differential gene expression analysis created by a domain expert recruited in our study. The 
figure highlights the conceptual schema of the w orkflo w (A), its implementation in Nextflow (B), and the implementation of a single step (C), that is, 
r efer ence genome alignment using the STAR tool. The w orkflo w comprises 6 computational steps in total. For each step, the used tool is given in blue 
below the task name. 
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encode syntactic and semantic relationships in human language. 
As a consequence, gener ativ e langua ge models, suc h as ChatGPT,
LLaMA [ 19 ], and LAMDA [ 46 ], can pr oduce mac hine-gener ated 

high-quality text that is indistinguishable from human writing. 
These gener ativ e ca pabilities hav e empo w ered these models to 
assist in diverse (creative) writing tasks and have been utilized to 
facilitate a wide range of inter activ e langua ge-based a pplications 
within the human-computer interaction community [ 47–52 ]. For 
instance , WordCraft [ 47 ] in vestigates the utilization of LLMs to aid 

fiction writers in tasks r anging fr om tr ansforming a text to r e- 
semble a “Dickensian” style to providing suggestions to combat 
writer’s block. Their findings indicate that writers found such text- 
generating models beneficial even when the generated text is not 
perfect. Petridis et al. [ 48 ] introduce AngleKindling, an interactive 
tool that employs LLMs to support journalists exploring different 
angles for reporting on a press release . T heir study with 12 profes- 
sional journalists shows that participants found the system con- 
sider abl y mor e helpful and less mentall y demanding than com- 
petitor brainstorming tools. Other applications include prototyp- 
ing support [ 49 ], generation of titles and synopses from k e yw or ds 
[ 52 ], conv ersational inter actions with mobile user interfaces [ 50 ],
and conceptional blending [ 51 ]. 

Next to their text writing ca pabilities, langua ge models ar e fur- 
ther known to retain commonsense knowledge within their train- 
ing data, effectiv el y tr ansforming them into accessible knowl- 
edge stores that can be seamlessly queried using natural lan- 
gua ge pr ompts . For instance , experiments with BERT [ 43 ] highlight 
that the model performance is competitive with traditional in- 
formation extraction and open-domain question answering. Fur- 
thermor e, r ecent studies show the potential of using ChatGPT for 
knowledge base construction, inspired by the fact that these lan- 
gua ge models hav e been pr etr ained on v ast internet-scale cor por a 
that encompass diverse knowledge domains [ 53 ]. Ho w e v er, it is 
orth noting that LLMs are known to fr equentl y gener ate halluci-
ations, whic h ar e outputs that, while statisticall y plausible and
eemingl y belie v able, ar e factuall y incorr ect [ 54 , 55 ]. 

sing LLMs to support programming 

he ability to gener ate ne w text and to reconstruct existing infor-
ation makes LLMs highly appropriate to support users in soft-
ar e de v elopment, as pr ogr amming often r equir es not onl y the

r eation of nov el code segments tailor ed to curr ent r equir ements
nd tasks but also depends on the application of established algo-
ithms, softwar e libr aries, and best pr actices. Accordingl y, a lar ge
umber of pa pers inv estigate LLMs specially trained for code gen-
ration [ 56–59 ] as well as different approaches leveraging these
odels to pr ovide inter activ e pr ogr ammer support [ 23 , 60–62 ]. For

nstance, Jiang et al. [ 61 ] discuss GenLine, a natural language code
ynthesis tool based on a gener ativ e LLM and problem-specific
rompts for creating or changing program code . T he findings from
 user study indicate that the a ppr oac h can pr ovide v aluable sup-
ort to de v elopers. Ho w e v er, they also encounter se v er al c hal-

enges, such as participants finding it difficult to form an accurate
ental model of the kinds of requests that the model can r eliabl y

r anslate. Similarl y, Vaithilingam et al. [ 62 ] conducted a user study
ith 24 participants e v aluating their usage and experiences us-

ng the GitHub Copilot [ 63 ] code generation model while program-
ing. The authors find that the synthesized code often provided a

elpful starting point and saved online searching efforts. Ho w ever,
articipants encountered issues with understanding, editing, and 

ebugging code snippets from Copilot, resulting in not necessar- 
l y impr ov ed task completion times and success rates . T hese find-
ngs align with the results of similar studies [ 64 ]. Ho w e v er, a con-
rolled experiment in [ 65 ] records a positive effect of code genera-
ors when used in introductory programming courses for minors.
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The use of gener ativ e LLMs and code generators has been
carcel y explor ed in scientific data analysis and not yet for sci-
ntific w orkflo ws. Liu et al. [ 23 ] examine the Codex code genera-
or [ 56 ] in the context of data analysis in spreadsheets for non-
xpert end-user pr ogr ammers. Mor eov er, se v er al studies investi-
ate the utilization for data visualization [ 66 , 67 ]. For example,
he study by Maddigan et al. [ 66 ] e v aluates the efficiency of Chat-
PT, Codex, and GPT-3 in producing scripts to create visualiza-

ions based on natur al langua ge queries . T he studies that ha ve
he most ov erla p with our work r egarding the intention to support
he design of data analysis pipelines are given by Hassan et al. [ 67 ]
nd Zahra et al. [ 68 ]. In the case of the former, ChatGPT is used
o build a conv ersational, natur al langua ge–based interface be-
ween users and the scikit-learn machine learning framework [ 69 ]
upporting users in se v er al phases of a machine learning project
 anging fr om initial task form ulation to compr ehensiv e r esult in-
er pr etation. For the latter , Laminar , a fr ame work for serv erless
omputing, is proposed, which offers possibilities for code search-
ng, summarization, and completion. Ho w e v er, the fr ame work is
olely focused on Python implementations. 

ethods 

his section describes the study methodology. We begin by out-
ining about the general study a ppr oac h. Then, we explain the re-
earc h pr ocess for eac h experiment. Based on r elated work and
he objectives of our resear ch, w e state the following research
uestions: 

RQ1: How performant is ChatGPT for comprehending and ex-
plaining scientific w orkflo ws? 

RQ2: How suitable is ChatGPT in suggesting and a ppl ying mod-
ifications for scientific w orkflo ws? 

RQ3: How efficient is ChatGPT in extending scientific work-
flows? 

eneral study design 

o answer our r esearc h questions, we investigate the capabilities
f ChatGPT, a widely used LLM, to comprehend existing w orkflo w
escriptions (cf. Study I), to exchange tools used within a work-
ow (cf. Study II), and to extend a partially given w orkflo w (cf.
tudy III) using 3 distinct user studies. We select these use cases
s understanding the dataflow and the analysis performed is es-
ential for successfully applying scientific w orkflo ws . Moreo ver,
xchanging tools and extending a partiall y giv en w orkflo w are
ommon use cases in adapting and reusing existing w orkflo ws
n the work context of domain scientists [ 6 ]. For each study, we
peciall y design conv ersational pr ompts sim ulating the inter ac-
ion between a user working with workflows and ChatGPT. For our
tudies, we le v er a ge v ersion GPT-3.5 of ChatGPT [ 70 ]. We decided
o use GPT-3.5 since it is openly available to the public and allows
ther r esearc hers to r epr oduce our inv estigations without addi-
ional incurring costs . Moreo ver, we pro vide the chat records in the
upplementary Material of this article via the GigaScience database
GigaDB) [ 71 ]. Additionall y, we de v elop distinct questionnaires for
 v aluating the output of ChatGPT by the domain experts for each
tudy. While conducting a study, we present a brief ov ervie w of
he study’s ov er all goal and the de v eloped questionnair e to the
xperts. Subsequently, the experts complete the questionnaire in-
ependently without the experimenters’ support. This pr ocedur e

s intended as participants were not pr essur ed by a time limit and
ould fr eel y allocate their time for the study. Furthermore, we in-
end to avoid a Hawthorne effect, where participants can provide
iased responses due to the presence of observers [ 72 ]. 
articipants 

 hroughout all experiments , we recruited 1 expert from bioinfor-
atics and 3 experts working on Earth observation workflows.
sing scientific w orkflo ws is common in these 2 areas. In bioin-

ormatics, scientific w orkflo ws are an important tool for enabling
he automation and documentation of complex data analysis pro-
esses, ensuring r epr oducibility and tr anspar ency in r esearc h [ 40 ].
n Earth observation, scientific w orkflo ws streamline the complex
r ocess of acquiring, pr ocessing, and anal yzing v ast amounts of
atellite and sensor data, enhancing the efficiency and accuracy
f environmental studies [ 79 ]. Hence, scientific w orkflo ws have
ecome commonplace in these 2 areas . T he professions include
ostdocs and PhD students working at universities. All partici-
ants hold a master’s degree in their profession and several years
f experience in their domain. All experts are between 25 and
0 years old (2 female, 2 male). 

cientific w orkflo ws 

n our study, we consider a total of 5 different workflows. We sum-
arize the used w orkflo ws and their details in Table 1 . The work-

ows are taken from the work context of the recruited experts,
iven their high degree of familiarity and expertise with them. In
ioinformatics, we use 2 workflows that deal with the analysis of
enomic data. First, the crisprseq w orkflo w, sour ced from the nf-
ore repository [ 27 ], a hub for best-practice w orkflo ws, focuses on
nal yzing and e v aluating gene editing experiments utilizing the
RISPR-Cas9 mechanism for genome engineering. Second, the RS-
TAR w orkflo w, which w as implemented b y the recruited domain
xpert, performs differential gene expression analysis using RNA
equencing data. The FORCE2NXF-Rangeland and FORCE are 2 im-
lementations of an Earth observation w orkflo w that is concerned
ith analyzing long-term vegetation dynamics in the Mediter-

anean using the FORCE toolkit [ 80 ], which provides processing
outines for satellite image archives . T he former is implemented
sing the Nextflow scientific workflow management system [ 40 ,
1 ] and the latter by le v er a ging Apac he Airflow [ 38 , 82 ]. The third
arth observation w orkflo w, called Grasslands , builds on pr e vious
ork [ 83 , 84 ] aiming at understanding differences in long-term
 hanges in-gr ound cov er fr actions specific to Eur opean gr asslands
epending on the definition of endmembers (i.e., unique spectral
ignatures of a specific material or ground cover) approximating
hese fractions. 

LM prompting 

he choice and design of prompts entered into a LLM has a deci-
ive influence on the output quality [ 85 ] and, in our case, on the
uitability of ChatGPT for w orkflo w de v elopment and implemen-
ation. Our prompts are organized first to provide the context, of-
en including the w orkflo w script, follo w ed b y the specific ques-
ion or instruction under investigation. Suppose the w orkflo w is
ivided into sub-w orkflo ws , possibly distributed o ver several files.
n that case, we first specify the main w orkflo w and then all sub-
 orkflo ws and task definitions in the order they occur in the main
 orkflo w. In our r esearc h’s initial sta ges, we experimented with
 arious alternativ e pr ompts for eac h user study, incr ementall y
odifying and enhancing them in response to the outcomes we

 eceiv ed. For example, for Study I (i.e., w orkflo w comprehension),
e discov er ed that ChatGPT tends to describe pr operties of the
 orkflo w language or technical aspects instead of w orkflo w char-
cteristics. Such phenomena could be resolved by adding explicit
nstructions (e.g., “do not explain nextflow concepts”). We refer to
he Prompt Design Challenges section for a detailed discussion
f prompt design challenges. We stopped this adjustment process

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
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Table 1: Ov ervie w of the used workflows. We examine workflows from 2 scientific domains (i.e., bioinformatics and Earth observation) 
and 2 w orkflo w systems (Nextflo w and Apache Airflo w). For each w orkflo w, w e report the number of (high-le v el) steps and used tools 
and in which study the w orkflo w is used. 

Domain Workflow Description #Steps #Tools Study 

Bioinformatics WF1:crisprseq 
[ 73 ] ( Nextflow ) 

A bioinformatics data pipeline for analyzing 
and e v aluating gene editing experiments 
utilizing the CRISPR-Cas9 mechanism for 
genome engineering. 

6 9 I 

Repository: [ 74 ] (created July 2022) 
WF2:RS-Star 
( Nextflow ) 

The general aim of this w orkflo w is to 
perform differential gene expression 
analysis using RNA sequencing data. 

5 5 I, II, III 

Repository: [ 75 ] (created November 2021) 
Earth observation 

WF3:FORCE2NXF- 
Rangeland [ 34 ] 
( Nextflow ) 

This w orkflo w analyzes long-term 

vegetation dynamics in the Mediterranean 
using the FORCE toolkit. 

9 8 I 

Repository: [ 76 ] (created November 2020) 
WF4:Grasslands 
( Nextflow ) 

This w orkflo w aims at understanding 
differences in long-term changes 
(1984–2022) in ground cover fractions 
specific to European grasslands. 

6 3 I, III 

Repository: [ 77 ] (created August 2023) 
WF5:FORCE 
( A pac he Airflow ) 

This w orkflo w focuses on analyzing 
long-term vegetation dynamics in the 
Mediterranean using the FORCE toolkit. 

8 8 I 

Repository: [ 78 ] (created February 2021) 
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after a few iterations as soon as no more of such artificial artifacts 
wer e gener ated. We hav e r efr ained fr om mor e extensiv e pr ompt 
engineering since w orkflo w designers are domain experts from di- 
verse fields who cannot be assumed to be specialists in de v eloping 
and tuning prompts. Ho w ever, w e ackno wledge that the choice of 
w or ding in our prompts influences the results [ 85 ]. We discuss the 
limitations of our work concerning the chosen study design and 

pr ompt str ategy selection in mor e detail in the Limitations and 

Future Work section. 

Study I: Workflow Comprehension 

In our first study, we investigate the capabilities of ChatGPT in 

capturing the actual purpose of a w orkflo w. In other w or ds, w e 
ar e pr ompting ChatGPT to explain the pur pose of a w orkflo w. In 

this study, we assess ChatGPT’s quality in comprehending and 

explaining a w orkflo w’s purpose in a user study inv olving w ork- 
flow experts. Understanding the dataflow and the analysis per- 
formed constitutes an important aspect of the daily work with 

scientific w orkflo ws. On the one hand, w orkflo ws ar e often pr e- 
cisel y ada pted to individual r esearc h questions, whic h makes it 
c hallenging e v en for other experts fr om the same domain to un- 
derstand them. On the other hand, in man y r esearc h institutions,
an increasing number of legacy workflows whose original authors 
and contributors are no longer available for maintaining and re- 
fining the codes r equir e taking ov er by ne w team members. Un- 
derstanding a w orkflo w is usually a prerequisite for adopting and 

a ppl ying a w orkflo w corr ectl y. 
T hus , Study I pursues 3 goals: how well does ChatGPT per- 

form on (i) identifying the domain and the ov er all objectiv e of 
the anal ysis; (ii) r e porting the indi vidual computation ste ps, used 

tools, their needed input data, produced output data; and (iii) ex- 
plaining r esearc h questions for whic h these anal yses ar e help- 
ful given the w orkflo w description. The first 2 parts of the study 
av e a r econstructiv e c har acter, wher eas the third is more ex-
lor ativ e, r equiring ChatGPT to reason beyond the given work-
ow description. We build a set of 5 different prompts to evaluate
hatGPT’s capabilities concerning the 3 dimensions. When pro- 
iding the w orkflo w definition in the prompt, delete all comments
ithin the definition to pr e v ent information leakage. Table 2 de-
icts the de v eloped pr ompts. For eac h w orkflo w, all pr ompts ar e
xecuted in 1 conversation, enabling ChatGPT to use the input
nd output of pr e vious pr ompts as context information. We ask
he domain scientists to e v aluate answers given by ChatGPT us-
ng a feedback questionnaire . T he complete questionnaire con-
ains 9 items in total and can be found in full length in the ar-
icle’s Supplementary Material (A) . The questionnaire focuses on 

he correctness of the prompts regarding the aim of the workflow,
he explanation, and the forecast of addressed research questions.
or 4 of the 9 items, users rate the generated explanations on a 5-
oint Likert scale (i.e., 1 = str ongl y disa gr ee; 5 = str ongl y a gr ee.). In
ddition, 3 items comprise quantitative evaluations of how many 
omputational steps are correctly detected, how many utilized 

oftware tools and programs are accurately identified, and how 

an y v alid follow-up r esearc h questions . T he remaining ques-
ion items concern the quality of the explanations of the w orkflo w
equence, the description of the tools used, and the results pro-
uced. We add a comment field for each item to report issues and
rrors in the generated explanations if the domain expert does not
 ppl y the content. 

esults 

he results of the expert surveys are presented in the following
ccording to the 3 subcategories of the questionnair e: r esearc h
rea and the overall aim of the w orkflo w, explanation of w orkflo w
etails, and subsequent r esearc h questions. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
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Table 2: Ov ervie w of the used prompts to investigate ChatGPT’s capabilities in capturing the content of a w orkflo w description (Study 
I). [workflow-language] and [workflow-text] represent placeholders for the w orkflo w management system (i.e., Nextflow or Apache Airflow) 
and the w orkflo w description text. All prompts are executed within 1 conversation. 

ID Category Prompt 

P1_1 Ov er all aim The following text contains a scientific workflow written in [workflow-language] : 
[workflow-text] . 
Explain from which research area this w orkflo w originates and describe the general aim 

of this w orkflo w. Don’ t explain [workflow-language] concepts. 
P1_2 Workflow explanation Explain all individual tasks that are implemented in this w orkflo w. For each task, explain 

whic h softwar e pr ogr ams or tools ar e used in this w orkflo w to perform the task. Don’ t 
explain [workflow-language] concepts. 

P1_3 Workflow explanation Explain the type of input data and the format of the input data needed for this w orkflo w. 
Don’t explain the workflow itself. 

P1_4 Workflow explanation Explain the ov er all r esult of this w orkflo w. For each individual task of the w orkflo w, 
report the type of data that is produced by this task. 

P1_5 Research questions Explain up to 3 r esearc h questions for which this workflow is helpful. 
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verall aim of the workflow 

he first 2 rows of Fig. 2 A highlight the rating distribution of the
omain experts concerning ChatGPT’s explanations for the re-
earc h ar ea and the ov er all aim of the w orkflo ws . T he experts
 gr eed with the explanations generated, indicating a basic un-
erstanding of ChatGPT regarding the different w orkflo ws ( μ =
.7, σ = 0.68). The lo w est a gr eement, with a scor e of 4 concerning
he r esearc h ar ea and 3 for the ov er all aim, was r ecorded in the
 v aluation of the WF4-Grasslands w orkflo w. In this case, the expert
ould not a gr ee with the explanations mainl y due to the wrong in-
er pr etation of an abbr e viation within the w orkflo w description,
hat is, FNF was misinter pr eted as “fraction of non-forest” instead of
old and fill . This misunderstanding resulted in the w orkflo w being
xplained as examining forest regions rather than grasslands. 

orkflow explanation 

n general, the participants regard the quality of the explanations
iven by ChatGPT as high (see Fig. 3 A, B). All computational steps
r e accur atel y identified in 3 of the 5 w orkflo w descriptions. More-
ver, for 4 of these 5 w orkflo ws, e v ery tool emplo y ed is corr ectl y
etected, but in WF5-Force , 2 of 8 were missing. The detailed de-
criptions of the tasks and tools provided b y ChatGPT w ere also
udged to be coherent by the experts. Overall, the worst perfor-

ance is ac hie v ed with the output for w orkflo w WF4-Grasslands ,
or which only 4 of 6 tasks are correctly extracted and only most
f the tools ar e corr ectl y described. These err ors ar e mainl y due to
ollow-up errors that result from the incorrect recognition of the
 orkflo w purpose. 
The results of the questions items (see Q1_7 and Q1_8 in

upplementary Material (A) ), which assess the produced informa-
ion about the format and type of input and output data of Chat-
PT, can be seen in the 2 lo w er ro ws in Fig. 2 A. Similar to the pre-
ious findings, the information generated for 4 of the 5 w orkflo ws
r e e v aluated positiv el y ( μ = 4.2, σ = 1.0). Again, onl y the pr o-
uced information for the w orkflo w WF4 was assessed as neutral
r negative , that is , input description score of 2 (disa gr ee) and data
pecification of 3 (neither a gr ee nor disa gr ee). 

esear c h questions 
he last query was concerned with explaining up to 3 subsequent
 esearc h questions to a given workflow. Figure 2 B shows the re-
ult of this question item. ChatGPT ac hie v es onl y moder ate per-
ormance, generating just for 1 w orkflo w (i.e., WF2-RS-Star ) 3 valid
 esearc h questions. In total, out of the 15 generated research ques-
ions, 10 wer e corr ect. These figur es suggest that ChatGPT offers
nly a reduced performance for more explorative tasks. 

tudy II: Workflow Modification 

he second study investigates how much ChatGPT can aid do-
ain experts in modifying and tailoring a w orkflo w in our sec-

nd study. Researchers usually do not start from scratch when
e v eloping w orkflo ws but typicall y ada pt or r euse parts of existing
 orkflo ws from the community [ 6 ]. This strategy applies in partic-
lar to biomedicine, in which w orkflo ws ar e mor e widespr ead and
ave a longer tradition compared to other domains [ 86 ]. For exam-
le, genomic w orkflo ws will often be applied to a broad spectrum
f data originating fr om differ ent sources, eac h with its distinc-
iv e featur es and c har acteristics, making it necessary to adjust the
 orkflo w definition for more efficient data pr ocessing. Mor eov er,

ec hnological adv ancements, suc h as in genome sequencing tec h-
ology [ 87 ], lead to new tools specially developed to leverage the
apabilities of the new technologies . T he continuous integration
f new and alternative scientific tools into existing w orkflo ws is
ssential to conduct state-of-the-art r esearc h [ 88 ]. 

In our study, we are particularly investigating the exchange
f used tools in the bioinformatics w orkflo w WF2-RS-Star whose
omputational scheme is given in Fig. 1 A. We select 2 parts of the
 orkflo w to be modified: 

(1) read trimming and filtering (also called read quality control),
originally performed by FASTP [ 89 ] and 

(2) r efer ence genome indexing and alignment, carried out by
STAR [ 90 ]. 

For assessing the w orkflo w modification capabilities of Chat-
PT, we build 4 prompts (see Table 3 ). The first prompt requests
 list of alternative tools for a given w orkflo w step from ChatGPT.
he second and third prompts request the recommendation of
 alternative tools, including an explanation of the suggestion, a
omparison of the selected tools with the tool originally used in
he w orkflo w script, and their strengths and weaknesses. With the
ast prompt, the actual rewriting of the w orkflo w to include the
elected tool is requested. We test the inclusion of 2 alternative
ools per computational task—that is, the prompts P2_3 and P2_4
see Table 3 ) are carried out once for each tool from the recom-

endation. Analogous to Study I, we use a questionnaire for e v al-
ating ChatGPT’s output by the biomedical domain expert con-
aining 13 items in total. For most items (9 out of 13), the gen-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
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A B

Figure 2: Results from Study I. (A) Rating distribution of the domain experts for ChatGPT’s capability in identifying the research area and overall aim 

as well as the input and data description of a workflow. The question item identifier (see Supplementary Material (A) ) is given in parentheses for each 
r ow. (B) Number of v alid r esearc h questions gener ated by ChatGPT for the different w orkflo ws as assessed by the domain experts (question item Q1_9 ). 
We prompted ChatGPT to output up to 3 research questions per w orkflo w. 

A B

Figure 3: Result statistics highlighting the number of corr ectl y identified tasks and tools of a workflow (A) and their explanation (B). We report 
separ ate r esults per inv estigated w orkflo w. The r esults ar e based on the r atings of the domain experts. Results in (A) correspond to the items Q1_3 and 
Q1_5 and in (B) to Q1_4 and Q1_6 of the questionnaire given in the article’s Supplementary Material (A) . 

Table 3: Ov ervie w of the used prompts to investigate ChatGPT’s capabilities in swapping used tools in bioinformatic w orkflo ws (Study 
II). Information in square brackets specifies placeholders for concrete information regarding the workflow or the tool to be replaced. 

ID Category Prompt 

P2_1 Tool exploration The following text contains a [domain] workflow written in [wor kflow-language] : [main-wor kflow] . 
The following snippets contain the source code for the step of the workflow which uses [tool] to 
perform [step] : [step-source-code] . Please provide a list of 10 alternative tools to perform [tool] . 

P2_2 Tool exploration The following text contains a [domain] workflow written in [wor kflow-language] : [main-wor kflow] . 
The following snippets contain the source code for the step of the workflow which uses [tool] to 
perform [step] : [step-sour ce-code] . Alternati ve tools for [step] are: [list-of-tools]. 
Which of the tools would you recommend as most suitable alternative for [step] in the given 
w orkflo w? Please name the two alternatives and give an explanation why these tools are 
especially advisable for the given w orkflo w. 

P2_3 Tool exploration [original-tool] and [alternative-tool] are two tools for [step] in [domain] workflows. First, explain the 
differences between the tools and the underlying approaches. Second, name strengths and 
weaknesses of both tools. 

P2_4 Workflow modification The following text contains a [domain] workflow written in [wor kflow-language] : [main-wor kflow] . 
The following snippets contain the source code for the step of the workflow which uses the 
[tool] to perform [step] : [step-source-code] . 
Please r e write the code of the w orkflo w and the process to use [alternative-tool] instead of 
[original-tool] . The number of parameters of the individual process descriptions may have to be 
adjusted. Please explain features/options of [original-tool] which are not supported in [new-tool] . 
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rated texts and explanations concerning methodical differences
r pros and cons of the tools should be rated on a 5-point Lik-
rt scale . T he r emaining questions r equir e numerical r atings (2
tems), y es/no answ ers (1), and free text fields (1). Again, we add
 comment field for each item to report issues and errors in the
enerated explanations if the domain expert does not fully ap-
ly the content. The complete questionnaire is given in the arti-
le’s Supplementary Material (B) . When conducting the study, we
lso provided the generated w orkflo w scripts to the domain ex-
erts and asked them to execute them on their systems. Further-
or e, we r equested the experts to inspect and correct any non-

unctional scripts. For the latter, we set a time limit of 20 minutes
er tool substitution. 

esults 

he r esults ar e pr esented in the follo wing accor ding to the 2 sub-
ategories of the prompts, including the exploration of alternative
ools and w orkflo w modification. We summarize the results of the
 use cases (i.e., read quality contr ol, r efer ence genome alignment)
nd each of the 2 alternative tools when reporting the results. 

ool exploration 

hen exploring possible alternative tools, ChatGPT sho w ed a
ood performance , pro viding a full y v alid list of 10 alternativ e
ools using prompt P2_1 (see Table 3 ) for both scenarios . T he
enerated output list for both tasks can be seen in Fig. 4 . How-
 v er, the domain expert criticized the alternative tools for refer-
nce genome alignment specified Bowtie [ 91 ] and not its succes-
or Bowtie2 [ 92 ]. From these, ChatGPT recommended HISAT2 [ 93 ]
nd Bowtie as alternatives for genome alignment and Trimmo-
atic [ 94 ] and Cutadapt [ 95 ] for read quality control. According

o the domain expert, all tools are principally valid substitutions,
ut Bowtie is a rather inappropriate suggestion since it is not
pecialized for RNA sequencing data. The results of explaining
he tools’ methodological differences, and strengths and weak-
esses can be seen in Fig. 5 . Essentially, the generated textual ex-
lanations were assessed positi vely, exce pt when describing the
ethodological differences between the tools. In this case, Chat-
PT could offer a convincing explanation in only 50% of the cases.

n the other cases, the texts were too general, and differences were
ot named clearly. In summary, similar to the results from Study

, ChatGPT solves these rather reconstructive tasks well, reach-
ng an av er a ge scor e of 4.1 (min = 3, max = 5, σ = 0.81) when
aking the results from items Q2_3 to Q2_7 (see questionnaire in
upplementary Material (B) ) into account. These results indicate
hat ChatGPT could effectiv el y used to explore tools in a given
eld. 

orkflow modification 

e requested ChatGPT to rewrite the w orkflo w script for each of
he 2 recommended alternative tools in both use cases, resulting
n 4 modified w orkflo ws in total. Table 4 summarizes the results
c hie v ed. First of all, none of the generated w orkflo w scripts was
ntir el y corr ect. Onl y in 1 of the 4 cases, the gener ated script was
at least) syntactically valid (i.e., if replacing FASTP with Trimmo-

atic for read quality control, and the domain expert could exe-
ute it without further adaptations). Ho w ever, the script was not a
emanticall y corr ect modification of the original w orkflo w script
ince one particular quality contr ol r outine (i.e ., P olyG trimming)
as not reflected in the adopted script. This issue also occurred for
utadapt, the other alternative tool for quality control. For both

ools, ChatGPT reported in the explanation text that the tools do
ot support this feature; ho w ever, in reality, they do. This failure
ould be inter pr eted as a kind of LLM hallucination [ 54 ]. The sec-
nd task, r efer ence genome indexing and alignment, r e v ealed dif-
erent issues than the first. Here, the main problem was the cor-
ect linking of the 2 subparts of the task, first the index genera-
ion and then the computation of the actual alignment. For the
ormer, each tool specifies and uses its distinct data format and
efines how to store the index (e .g., sa ving it in 1 or multiple files).
o w e v er, the storing str ategy also affects how the output of the

ndexing task has to be passed on to the input of the alignment
omputation. In the scripts generated by ChatGPT, the actual step
escriptions to invoke indexing and alignment by the tools were

gener all y) v alid. Ho w e v er, the linking of these two needed to be
orrected. For example , Bowtie sa ves its index in multiple files
haring a common file name pr efix, whic h has to be specified as a
arameter during alignment. Ho w ever, in the modified script, the

ist of all files of a specially created directory was passed to the
lignment process. For Bowtie, this problem could be easily fixed
y the domain expert, but for HISAT2, it was not that trivial and
ence could not be solved in the given time budget of 20 minutes.

To sum up, the study’s results indicate that modifying w orkflo w
cripts poses considerable challenges for ChatGPT as it r equir es a
etailed understanding of the tool’s idiosyncrasy, the exact com-
utations they perform, and the data formats they use. 

tudy III: Workflow Extension 

n the third study, we investigate the capabilities of ChatGPT in ex-
ending a scientific w orkflo w given a partial script. As discussed in
he motivation for Study II (see Study II: Workflow Modification),
sers often reuse parts of existing w orkflo ws from the r esearc h
omm unity and ada pt them to the r esearc h question at hand
y enhancing the pipeline with additional analyses and compu-
ational steps [ 6 ]. Mor eov er, data anal ysis pr ojects ar e often ex-
lor atory pr ocesses, and computation pipelines ar e incr ementall y
dapted and extended based on executions and findings from pre-
ious versions of the w orkflo w (e.g., to include additional data cor-
 ectness c hec ks, add mor e differ entiated r esult e v aluations, and
r ovide adv anced r esult visualizations) [ 96 ]. In our study, we sim-
late this incremental exploration process by taking an existing
 orkflo w and removing n steps at the end of it. We then request
hatGPT to (i) enumerate the necessary steps to accomplish the
riginal r esearc h goal and (ii) r egener ate the next step using the
ool of the original pipeline or by giving a verbal description of
he task. For this study, we select 1 w orkflo w fr om eac h r esearc h
omain for investigation: WF2-RS-Star for biomedicine and WF4-
rasslands for Earth observation. The 2 w orkflo ws w er e c hosen be-
ause they offer different implementation characteristics; that is,
F2-RS-Star le v er a ges almost exclusiv el y external tools, wher eas

rasslands r elies mor e str ongl y on speciall y implemented R and
ython scripts . Moreo ver, Study I (see Study I: Workflow Compre-
ension) already sho w ed notable r esult differ ences of ChatGPT for
oth w orkflo ws. By choosing these 2 specific w orkflo ws, w e aim to
ncompass a possibly broad spectrum of performance variations.
e test ChatGPT’s w orkflo w extension capabilities in 3 scenarios:

or WF2-RS-Star , we r emov e the last step, transcript quantification , as
ell as the last 2 steps, transcript quantification and format conver-

ion , forming 2 extension scenarios. In the case of WF4-Grasslands ,
e r emov e all steps at the tail of the w orkflo w, including autore-
ressive trend analysis (see schema in Supplementary Material (D) ).

Table 5 illustrates the prompts developed for this purpose . T his
tudy uses slightl y differ ent pr ompts (see P3_2a and P3_2b) r e-
ecting the different w orkflo w types (i.e., tool vs. script based).

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
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Figure 4: Representation of the output of ChatGPT when requested to provide a list of alternative tools for reference genome indexing and alignment 
(left) and read quality control (right) using prompt P2_1. All tools are assessed to be valid by the biomedical domain expert. 

Figure 5: Ov ervie w of the r ating distribution of the biomedical domain expert for ChatGPT’s ca pability for explaining alternativ e tools, methodical 
differ ences, and str engths and weaknesses (S&W) of the tools . T he question item identifier (see Supplementary Material (B) ) is given in parentheses for 
eac h r ow. 
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For the latter, we include additional instructions to (i) spec- 
ify the pr ogr amming langua ge of the script and (ii) ask the 
domain expert for a verbal description of the computational 
steps to be implemented. See Supplementary Material (E) for 
the verbal description provided by the Earth observation ex- 
pert. The questionnaire for evaluating the generated outputs con- 
sisting of 7 items can be found in the article’s Supplementary 
Material (C) . 

Results 

The r esults ar e pr esented in the follo wing accor ding to the 2 sub- 
categories of the prompts: w orkflo w exploration and extension. 
orkflow exploration 

or describing further computational steps necessary to accom- 
lish a specific r esearc h goal giv en a partial w orkflo w, ChatGPT
ho w ed mixed results . T he LLM pro vides a correct list of suitable
teps in 2 of the 3 scenarios. Also, the tools and methods for im-
lementing the steps suggested b y ChatGPT w er e v alid. Ho w e v er,
oth domain experts criticize that the specifications for the nec-
ssary steps and the proposed tools tend to be rather generic and
eneralized. For instance, for extending the WF4-Grasslands work- 
ow, the Earth observation expert commented: 

Overall, the proposed workflow is very generic and does not provide a 

clear roadmap for the analyses. It also proposes to use very simplistic 

and often imperfect approaches. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
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Table 4: Ov ervie w of the results of the workflow modification use case in which the tools performing a specific task are replaced by 
alternative ones. For each task, we provide the original tool (in parentheses) and the investigated alternative ones suggested by ChatGPT. 
For each combination, we highlight ( � = yes, × = no) whether the generated w orkflo w script could be executed (Exec.), whether it is 
semanticall y v alid (Val.), and whether it could be fixed within 20 minutes (Fix). For the latter, ( � ) indicates cases where the script could 

be fixed to be executable but not entir el y semanticall y corr ect. Mor eov er, we pr ovide excer pts fr om the domain expert’s comments. 

Task Alt. tool Exec. Val. Fix Problems/comments 

Read quality 
control 
(FASTP [ 89 ]) 

Trimmomatic [ 94 ] � × ( � ) � Missing implementation to perform special quality 
contr ol featur e (i.e., pol yG trimming) 

� Invalid description of w orkflo w differences: 
- ChatGPT stated that polyG trimming is not 
available in Trimmomatic, but it actually is; ho w ever, 
extra implementation for data adaptation is needed 
- Differences of the generated output files not 
described accur atel y 

Cutadapt [ 95 ] × × ( � ) � Wr ong pr ogr am call: syntacticall y incorr ect 
specification of 2 parameters 
� Missing provision of valid adapter sequences 
� Invalid description of differences of the w orkflo w 

script: 
- ChatGPT stated that polyG trimming is not 
available in Cutadapt, but it actually is 
- Differences of the generated output files not 
described accur atel y 

Genome indexing 
and alignment 
(STAR [ 90 ]) 

HISAT2 [ 93 ] × × × � Invalid definition and linkage of input and output 
between genome index generation and alignment 

� Syntacticall y incorr ect call of the alignment 
process 
� Does not take parameter strandedness of the input 

data into account 
� Output files are not generated correctly 

Bowtie [ 91 ] × × � 

� Invalid definition and linkage of input and output 
between genome index generation and alignment 
� Wrong output definition of genome indexing task 

Table 5: Ov ervie w of the used prompts to investigate ChatGPT’s capabilities in extending a given partial w orkflo w (Study III). We distin- 
guish 2 types of prompts: w orkflo w exploration and w orkflo w extension. For the latter, we developed 2 variants specially designed for 
tool-based (P3_2a) and script-based (P3_2b) w orkflo ws. 

ID Category Prompt 

P3_1 Workflow exploration The following text contains a [domain] workflow written in Nextflow: [workflow-description]. 
The w orkflo w should be used to [overall-goal] . Whic h steps ar e missing in order to perform 

[overall-goal] ? Please specify only the absolutely necessary steps. For each step name up to 
three [domain] tools that can be used to perform the task. 

P3_2a Workflow extension The following text contains a [domain] workflow written in Nextflow: [workflow-description] . 
Please extend to the given w orkflo w to include one further step which [step-description] using 
[tool] . Please specify the new process description in a file at [file-name] . Please use version 2 of 
the Nextflow workflow language . T he ne w pr ocess should take the output of [predecessor-step] as 
input. 

P3_2b Workflow extension The following text contains a [domain] workflow written in Nextflow: [workflow-description]. 
Please extend to the given w orkflo w to include one further task which performs [step] using an 
[progr amming-language] script. F or this, please generate an [progr amming-language] script, stored 
in [script-file-name] , which performs the following computations: [verbal-task-description] . 
Next to the [programming-language] script generate the Nextflow process description in a file 
named [process-file-name] and the updated w orkflo w. Please use version 2 of the Nextflow 

w orkflo w language . T he ne w pr ocess should take the output of [predecessor-step] as input. 
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Ov er all, the r esults confirm the findings fr om the 2 pr e vious
tudies that ChatGPT shows weaknesses in more exploratory
asks. 
C  
orkflow extension 

sing the prompts P3_2a and P3_2b (see Table 5 ), we request
hatGPT to reconstruct the last removed computational step in
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each extension scenario. Table 6 summarizes the results achieved.
Like the results from Study II, ChatGPT shows considerable weak- 
nesses in the automatic extension of w orkflo ws. None of the gen- 
erated w orkflo w scripts w as executable without the intervention 

of the domain expert. A clear difference is revealed when com- 
paring the 2 domains, biomedicine and Earth observation. In the 
former case, the generated w orkflo w scripts are (at least) of such 

a quality that the domain expert could successfully correct them 

within 20 minutes. In the generated scripts, mainly syntactical er- 
r ors occurr ed (e.g., incorr ect usa ge of v ariable identifiers, incom- 
plete input definitions, or missing specification of parameters), 
which could be easily corrected. Ho w ever, the calls to the respec- 
tiv e pr ogr ams to perform the 2 tasks wer e corr ect. 

In contr ast, the gener ated extension for WF4-Grasslands was of 
consider abl y lo w er quality. In this case, se v er al syntactic and se- 
mantic errors occurred (e.g., the script uses a non- library func- 
tion, no parallelization code is included, and not all requested 

computations are performed). In this state, the domain expert 
could not r esolv e the lar ge number of pr oblems within 20 min- 
utes. Ho w e v er, when inter pr eting these r esults, one m ust r emem- 
ber that the task in this scenario is also significantl y mor e difficult.
Instead of a short task description and specification of a tool to be 
used, ChatGPT has to design and generate the source code for a 
complex data analysis procedure containing multiple substeps. 

Discussion 

We conducted 3 studies to investigate the capabilities of using 
ChatGPT for comprehending, modifying, and extending scientific 
w orkflo ws. We discuss our methodology and the results in the fol- 
lowing. 

Comprehending scientific w orkflo ws 

Study I was designed to answer RQ1 by e v aluating ChatGPT’s 
performance in comprehending existing w orkflo ws . T he domain 

experts assessed that ChatGPT is good at this task while show- 
ing slight differences between the investigated research domains. 
In particular, the explanations for w orkflo w WF4-Grasslands re- 
v ealed consider able performance dr ops. Unlike the other work- 
flows investigated, this one uses multiple proprietary R and 

Python scripts instead of le v er a ging external tools for assembling 
data-processing pipelines . T he lack of standardized tools makes 
w orkflo w compr ehension mor e c hallenging since ChatGPT has to 
inter pr et complex pr ocessing logic and has fe wer possibilities to 
le v er a ge static information, like the description of the general pur- 
pose of an established bioinformatics tool, seen through its train- 
ing while generating the response. In addition, code quality and its 
readability may strongly influence the results for w orkflo ws con- 
taining proprietary scripts. For instance, one major problem while 
explaining WF4-Grasslands in Study I was the misinter pr etation of 
the abbr e viation “fnf ” as “fraction of non-forest ” instead of “fold and 
fill .” Such customized and ambiguous terms challenge LLMs and 

reduce their applicability. 
In an ablation experiment, we replaced all abbr e viations in WF4 

with their complete form and r egener ated the explanations of 
pr ompt P1_1, r equesting the ov er all pur pose of the w orkflo w. Hav- 
ing access to the full forms in the script, ChatGPT’s output was 
m uc h better, e v en if the exact goal of the w orkflo w w as still only
met on a rather abstract level: 

aimed at extracting detailed information about land cover dynamics, 

vegetation phenology, and environmental changes in a specific region 

using satellite data. 
We also did a r e v erse experiment using WF2-RS-Star by replac-
ng all full-form task names with abbr e viations in the w orkflo w
cript (but k ee ping the name of the tools called fixed). In this case,
he results did not change considerably, highlighting the stronger 
obustness of ChatGPT against such changes. 

odifying scientific w orkflo ws 

e answer RQ2 in Study II by e v aluating the modification per-
ormance of ChatGPT . T o this end, we requested the LLM to sub-
titute the le v er a ged tools for 2 computational tasks, read qual-
ty control and reference genome alignment, in the biomedical 
 orkflo w WF2-RS-Star . The study results suggest that ChatGPT

an effectiv el y explor e and explain alternativ e tools in the field,
ossibly shortening the time the experts spend searching for suit-
ble replacements on the web. In contrast, the results also indi-
ate that ChatGPT rather poorly supports the generation of work- 
ow scripts for using these alternative tools. In only 1 scenario

i.e., substituting FASTP with Trimmomatic ), the produced script 
ould be run without syntactical errors, and in one other sce-
ario (i.e., replacing STAR with Bowtie), the script could be fixed
ithin 20 minutes to be syntactically and semantically valid. In

he used version of ChatGPT and the selected setup, an increase
n efficiency cannot be recorded or anticipated, highlighting the 
eed for further r esearc h efforts. Ho w e v er, when inter pr eting the
esults, it is essential to remember that ChatGPT is a general-
ur pose LLM r ather focusing on human langua ge. A potential op-
ion for impr ov ement could be testing gener ativ e models mor e
tr ongl y ada pted to pr ogr amming code, suc h as GitHub Copilot
r Code Llama [ 19 ]. Mor eov er, alternativ e pr ompting str ategies,
hic h ada pt the w orkflo w iter ativ el y, could help avoid err ors (e.g.,
hen linking the source code of existing tasks with the new task
escriptions). We refer to the discussion of other prompting solu-
ions in the Limitations and Future W ork section. W e emphasize
gain that w orkflo ws and the de v elopment of tools in bioinfor-
atics, particularly in the field of genomic anal yses, ar e based

n a more extended history and have established more robust
nd mor e widel y used softwar e than other scientific fields. Ac-
ordingl y, it is r easonable to infer that the outcomes, suc h as for
uggesting alternativ e tools, r eflect an upper boundary of qual-
ty, suggesting that encountering difficulties is more likely in less
xplor ed a pplication ar eas due to insufficient data av ailability. 

xtending scientific w orkflo ws 

inall y, we inv estigate RQ3 by conducting Study III. To this end, we
equested ChatGPT to extend an existing (partiall y giv en) work-
ow to ac hie v e specific goals . T he study results confirm the find-

ngs from the 2 pr e vious studies and emphasize ChatGPT’s dif-
culties in solving more complex and exploratory problems. In 

his case, explaining the necessary steps to answer the given re-
earch questions and the generation of the w orkflo w script for the
ext step offer ed (partl y) se v er e issues. Similar to the r esults of
tudy I, the picture is mixed regarding the different research do-
ains, Earth observation and bioinformatics. For the latter, the 

enerated scripts form a relatively good basis for the implemen-
ation, having only (minor) syntactical issues that the expert could
uic kl y fix. In contr ast, in the case of Earth observation, the script
uality was consider abl y worse, hindering a fast corr ection by the
xpert. These r esults impl y that efficient user support is possi-
le for pipelines mainly leveraging external tools. Ho w ever , fur -
her r esearc h is necessary to inv estigate user-support str ategies
or w orkflo ws a ppl ying speciall y implemented anal ysis scripts.
pecificall y, human-in-the-loop a ppr oac hes that involv e human



12 | GigaScience , 2024, Vol. 13 

Table 6: Ov ervie w of the results of the w orkflo w extension use case in which we provide ChatGPT a partial w orkflo w and request the 
LLM to extend it by 1 further computational step. For each investigated use case, we highlight ( � = yes, × = no) whether the generated 

w orkflo w script could be executed (Exec.), whether it is semanticall y v alid (Val.), and whether it could be fixed within 20 minutes (Fix). 
For the latter, ( � ) indicates cases where the script could be fixed to be executable but not entir el y semanticall y corr ect. Mor eov er, we 
pr ovide excer pts fr om the domain expert’s comments. 

Workflow Task/Tool Exec. Val. Fix Problems/comments 

WF2-RS-Star Transcript 
quantification/ Cufflinks 
[ 99 ] 

× × � 

� Syntax errors: process definition for CUFFLINKS 
declares 1 input channel but 2 were specified 

� Input tuple does not match input set cardinality 
declared by process definition 
� Wr ong v ariable name: sorted_bam (wr ong) instead 

of sample_bam 

Format 
conversion/ SAMtools 

× × � 

� Syntactical errors: usage of wrong variable name 
(sample_sam) 
� Incorrect syntax for connecting the new task to the 

pr e vious one SAMTOOLS(STAR_ALIGN.sample_sam) 
(wrong) vs. 
SAMTOOLS(STAR_ALIGN.out.sample_sam) (correct) 

[ 100 ] 
WF4- Grasslands AR analysis/ R script × × × � Input to the R script is a path to a directory, not a 

TIFF file 
� Incorrect use of remotePARTS library: there is no 

function called autoTrend in this pac ka ge 
� Calculation needs to be parallelized (as specified in 

the request) 
� Computation should be implemented for 4 types of 

inputs: GV , NPV , SOIL, and SHADE 
� Desired outputs from the AR model need to be 

r etrie v ed and written out (missing) 
� Script declares a Conda environment (Python), not 

R environment 
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xperts mor e closel y in the code gener ation pr ocess could also be
elpful here (see Limitations and Future Work section). 

cientific w orkflo ws in LLM tr aining da ta 

LMs ar e tr ained on lar ge amounts of textual data from the web,
ncluding pr ogr amming code and w orkflo w scripts [ 43 ]. There-
ore, it is crucial to consider whether and to what extent an LLM
as already able to access the w orkflo w scripts of our study dur-

ng its pr etr aining. According to public information [ 97 ], Chat-
PT was trained on data gathered until September 2021, mean-

ng that initial versions of 2 of the 5 tested w orkflo ws (i.e., WF3-
ORCE2NXF-Rangeland and WF5-Force ) could have been part of the
LM’s tr aining r outine. Ho w e v er, the specific tr aining dataset used
or ChatGPT is not accessible to the public, pr e v enting a conclu-
ive assessment. To attain a more precise estimate of the po-
ential number of w orkflo w scripts within the training data in
eneral, we initiated searches for scientific workflow repositories
n GitHub. We le v er a ge the r epository searc h engine of the web-
ite [ 98 ] and use the names of 4 widely used w orkflo w manage-
ent systems (i.e., Apache Airflo w, Nextflo w, Snak emak e , and Ta v-

rna) as a query term. We filter all repositories with creation data
ess than 1 September 2021 from the query results. Of course, the
 esults m ust be inter pr eted car efull y since not e v ery r epository
ontaining the name has to deal with scientific w orkflo ws, e v en
f the names are very peculiar. Detailed statistics from our search
esults can be found in this article’s Supplementary Material (F) .
s of September 2021, there w ere betw een 352 and 1,900 reposi-

ories containing one of the w orkflo w system names in their de-
cription. Mor eov er, the r esults highlight the incr easing popularity
f w orkflo ws since, for all systems except for Taverna, the num-
er of repositories has almost doubled over the past 2 years. We
lso c hec k ed the n umber of Nextflow pipelines available in nf-
ore. As of September 2021, 35 pipelines were published, and 19
er e under de v elopment [ 27 ]. Today, nf-cor e hosts 55 published
ipelines and 33 in de v elopment. In summary, we can hypothe-
ize from these results that ChatGPT can likely rely only on a rela-
iv el y small base of w orkflo w scripts during its training compared
o classical pr ogr amming code (e.g., GitHub curr entl y hosts over
.9 million Java and over 2.2 million Python repositories, which
e determined by using GitHub repository search and the search
ueries “language:Java ” and “language:Python ,” making user support
or w orkflo w design and implementation particularl y c halleng-
ng). 

rompt design challenges 

hile cr eating pr ompts for the studies, we identified se v er al c hal-
enges and issues that arose while interacting with ChatGPT. 

epresentation of workflows 
or the r epr esentation of the w orkflo w scripts, there is no straight-
orw ar d option on how to include them in a prompt. The workflow
escriptions are often spread over several files containing sub-
 orkflo ws and task descriptions. In our a ppr oac h, we first spec-

fy the main w orkflo w and then all sub-w orkflo ws and task de-
criptions in order of occurr ence. Howe v er, ther e might be other,
ore efficient prompt solutions (with respect to the generative

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae030#supplementary-data
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langua ge model). Furthermor e, the w orkflo w scripts might exceed 

the maximum allo w ed input length of the language model (e.g.,
ChatGPT variants allow only for 4,000 to 16,000 w or ds/tokens [ 97 ] 
in the input sequence). In particular, w orkflo ws heavily relying on 

specially implemented scripts having hundreds of code lines will 
face this issue. 

Loss of focus 
Some of the prompts are very long due to the specification of the 
entire w orkflo w script, which challenges ChatGPT to maintain fo- 
cus. Ad ding ad ditional instructions to the prompt helped to avoid 

or reduce this phenomenon; for example, for the explanation use 
case (Study I), we added to the prompt “Don’t explain nextflow con- 
cepts” (see P1_1 and P1_2 in Table 2 ) and “Don’t explain the work- 
flow itself” (P1_3) to pr e v ent ChatGPT gener ating outputs describ- 
ing features of the w orkflo w management system or the complete 
w orkflo w when requesting input data specification. 

Technological details 
In some cases, adaptation to technological details of the specified 

w orkflo ws w as necessary. For example, the Nextflo w system of- 
fers 2 language versions for describing processing pipelines . T he 
Nextflo w w orkflo ws in our study all used the ne w v ersion of the 
language. Ho w ever, when extending w orkflo ws in Study III, w e had 

to specify the desir ed v ersion (see P3_2 in Table 5 ) to get the cor- 
rect output. This observation is surprising since the partially given 

w orkflo w is already in the respective version. Interestingly, this 
was only necessary for the w orkflo w extension but not for their 
modification (P2_4 in Table 3 ) in which the phenomena did not 
occur. 

In summary, the efficient and effective formation of prompts 
offers a wide range of possible solutions. In our study, we iden- 
tified initial clues and difficulties, but further r esearc h is needed 

to detect further potential for improving the interaction between 

domain experts and ChatGPT and gener ativ e LLMs in general. 

Limitations and future work 

In the follo wing, w e highlight the limitations of this work that 
merit further r esearc h. 

Study design 

In each of our 3 studies, we created and provided the prompts for 
testing ChatGPT’s capabilities concerning the different use cases, 
and the domain experts only evaluated the outputs of ChatGPT,
leading to a rather indirect interaction between the domain sci- 
entist and the LLM. An alternative design for the study would 

be to have the experts interact directly with ChatGPT by devel- 
oping and refining the prompts inde pendently. In ad dition to as- 
sessing the capabilities of ChatGPT, this would have the advan- 
tage of gaining initial insights into interaction forms and patterns 
of the different experts with ChatGPT. Mor eov er, this would al- 
low for impr ov ed customization of the prompts to the particular 
r esearc h domain and the idiosyncratic properties and character- 
istics of each w orkflo w. Extended optimization of the prompting 
strategy by the domain scientist could lead to better results but re- 
duce potential time savings in solving the actual task. Our study 
design was motivated by the fact that the experts had str ongl y 
limited time budgets for the study. For example, e v en for e v aluat- 
ing ChatGPT’s outputs in Study I, the experts already needed up to 
3 hours to accur atel y c hec k the gener ated explanations. A study 
design that envisages direct interaction involves high efforts in 

terms of introduction and explanation to ChatGPT and prompt- 
ng strategies for the domain scientists, thus limiting the scope of
 esearc h questions that can be investigated. In addition, the se-
ected study design has the adv anta ge of using the same prompts
or the different domains, which contributes to better compara- 
ility of the results and eliminates the influence of differences for

ndividual prompt differences. 
In our study, we focused solely on ChatGPT as gener ativ e lan-

uage model. Ho w ever, there are many other general-purpose
odels available (e.g., PaLM-2 [ 45 ], Gemini [ 101 ], or Llama-2 [ 19 ])

s well as models more specially designed for pr ogr amming tasks
e.g., GitHub Copilot, Code Llama [ 102 ], or OpenAI Codex [ 103 ])
ublicl y av ailable and worth inv estigating. Furthermor e, r ecent
 esearc h showed that placebo effects can undermine the validity
f study results when user expectations are altered through the
resence of an artificial intelligence [ 104–106 ] (i.e., LLM) or a novel
uperior technology [ 107 , 108 ] that impr ov es user capabilities. Our
tudies only highlight the results of ChatGPT in the version used
GPT-3.5) but do not claim generalizability for other LLMs. In fu-
ure work and in the case of using LLMs, placebo conditions must
e included to avoid findings that are not a result of increased user
xpectations to w ar d the capabilities of ChatGPT. 

r oprietar y and closed-source LLMs 
hile ChatGPT and other proprietary LLMs offer remarkable nat- 

r al langua ge understanding and gener ation ca pabilities, they
av e inher ent limitations that can hinder their utility in scientific
 orkflo w de v elopment. One significant limitation is their lac k of

r anspar ency in their underlying algorithms and training data, re-
tricting results’ direct reproducibility and interpretability. Users 
ypicall y inter act with these models thr ough an a pplication pr o-
ramming interface or web application provided by the company 
r organization that developed it rather than having direct ac-
ess to the underlying code or data, which often makes it impos-
ible to trace any changes to the model and, thus, to the results
c hie v ed. Mor eov er, the closed nature of these models restricts re-
earchers’ ability to customize or fine-tune them for specific tasks,
imiting their adaptability to diverse research domains. An alter- 
ative is using freely a vailable , open-source LLMs , like BLOOM [ 20 ]
r LLaMA [ 19 ], where users have more control over model changes.
onetheless, the data basis and training procedure are often not

ull y tr anspar ent, e v en with these models. Mor eov er, it is essential
o note that running such models demands substantial computa- 
ional resources and the corresponding technical expertise. 

rompting strategy 

ext to other models, the prompts used in our studies also consti-
ute a limiting factor. We cannot exclude the possibility that other
r ompts, using a differ ent structur e or w or dings , ma y ac hie v e bet-
er results for the investigated use cases . Moreo ver, in our ap-
r oac h, we used onl y the w orkflo w description’s sour ce code, with-
ut comments, to form the pr ompt. Ther e ar e se v er al str ategies
or enriching the prompt with additional context information,
hich can lead to improved results. For instance, including avail-
ble documentation artifacts of the w orkflo w, for example, de-
criptive texts in the source code repository or the publication
ntroducing (parts of) the w orkflo w, may ease the processing of
he text. Similarly, utilizing descriptions or manuals for the tools
mplo y ed could also contribute to better results. 

In addition, the prompts for individual aspects of the work- 
ows could be r e vised to obtain more differentiated results. For

nstance, the prompts for exploring alternative tools (see P2_1 
nd P2_2 in Table 3 ) could be extended to request further semi-
tructur ed information, suc h as the pr ogr amming langua ge used,
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oftwar e license, r elease date, and de v elopment history, guid-
ng the tool selection process. Information on the de v elopment
istory, for example, could help domain experts differentiate
etw een w ell-established, trusted tools and ne w de v elopments.
his would additionally enhance result interpretation since there
ight be limited information available for recent advancements,

otentially leading to their (yet) insufficient r epr esentation in the
LM. 

Furthermor e, our a ppr oac h is based on a linear prompt ex-
cution without feedback or r e vision opportunities. Iter ativ e
r ompting str ategies, suc h as c hain-of-thought [ 109 ] or gr a ph-of-
houghts prompting [ 110 ], self-debugging [ 111 ] or self-adapting
 ppr oac hes [ 112 ], can potentially enhance results . T hese strate-
ies offer dynamic interaction approaches with LLMs, enabling
ontinuous impr ov ement and ada ptation of r esponses thr ough
uccessiv e r efinements . T his facilitates , for example , the correc-
ion of errors encountered during w orkflo w modification and ex-
ension, such as syntax errors in tool invocation, data format mis-

atches , or in valid task linking, by utilizing the LLM output as
nput for the subsequent iteration. In addition to other techni-
al possibilities of the LLM conv ersation, pr ompt customization
nd adaptation by human experts offer strong potential for im-
r ov ement [ 113 , 114 ]. Using such human-in-the-loop approaches
llows for explicitly addressing the observed problems, especially
n w orkflo w modification and expansion, in a semi-automatic pro-
ess. 

tochastic generation 

n addition to alternativ e pr ompting str ategies, it should be em-
hasized that the generated texts are subject to stochastic sam-
ling pr ocesses, whic h can lead to de viations e v en when r eusing
he exact same prompts multiple times. In most LLMs, the influ-
nce of this phenomenon can be managed using the temperature
yper par ameter, whic h r egulates how the model samples the next
 or d b y adjusting the pr obability distribution. Higher temper a-

ur e v alues soften the distribution, leading to mor e div erse and
r eativ e outputs, allowing the model to explore a broader range
f possibilities. On the other hand, a lo w er temper atur e tends to
r oduce mor e conserv ativ e and pr edictable outputs, as the model

s mor e likel y to c hoose tokens with higher probabilities . T hus , the
ar ameter serv es as a knob to adjust the balance between explo-
 ation (gener ating div erse outputs) and exploitation (pr oducing
or e likel y outputs). An extensiv e inv estigation of the par ame-

er’s influence r epr esents an inter esting futur e r esearc h question.

imited number of domain experts 
n the context of our studies, only 4 domain experts evaluated the
utputs of ChatGPT. In some cases, generated explanations were
ssessed by one person only (e.g., Study II). This low number of
xperts limits the validity and generalizability of the results and
ffers the risk of subjective bias. Ho w ever, recruitment for such
tudies is difficult because the number of potential participants is
mall and they often have strongly limited time budgets, making
tudy design challenging. Please note that for experts in the field,
 v en “just” familiarizing themselves with an unfamiliar w orkflo w
s a challenging and time-consuming endeavor. 

nvestigated domains and selected workflows 
ur study explores real-w orld w orkflo ws from the 2 domains,
ioinformatics and Earth observation. Of course, these only rep-
esent part of the full range of w orkflo ws in the natural sciences.
t constitutes an exciting follow-up r esearc h question: how suit-
ble ChatGPT and other gener ativ e LLMs ar e in other r esearc h
ontexts, such as climate research [ 33 ] and astronomy [ 32 ], and
hether it is possible to identify categories or groups of domains

hat ar e particularl y well (or poorl y) supported. Furthermor e, we
xamined only 2 w orkflo w systems, Nextflo w and Apache Airflo w,
ea ving other alternatives , such as Snak emak e , Ta verna, and Pe-
asus, for future work. Investigating other w orkflo w systems is es-
eciall y inter esting because they specify differ ent langua ges with
ifferent complexity levels and support features for designing
nalysis pipelines. For example, the language of Apache Airflow,
hich prioritizes flexibility and extensibility through its integra-

ion with the gener al-pur pose pr ogr amming langua ge Python, ex-
ands the potential output scope compared to more determinis-
ic langua ges suc h as the Common Workflow Langua ge [ 115 , 116 ].
onsequentl y, this incr eased v ariability likel y poses consider able
hallenges for LLMs. For this, a thorough analysis of how the id-
osyncrasy of the leveraged w orkflo w language influences the out-
omes produced by LLMs would be beneficial in offering guidance
o practitioners. 

xplored use cases 
his work focused on comprehending, modifying, and extending
 orkflo ws with ChatGPT. These use cases r epr esent onl y a partial

cope of user support opportunities, and it is worth considering
nd e v aluating other use cases. For instance, migrating w orkflo ws

mplemented in legacy workflow management systems to more
ecent ones (e.g., transforming Taverna [ 86 ] scripts to Snak emak e
r Nextflow) or adapting them to differ ent infr astructur e stac ks
oses an interesting research question. Moreover, user support in
 orkflo w debugging, error identification, or optimization, as done

n classical pr ogr amming [ 62 ], would be a valuable contribution
o r esearc h scientists. 

onclusion 

he significance of large-scale data analysis w orkflo ws in advanc-
ng r esearc h in the natural sciences is gr owing steadil y. De v el-
pers of such w orkflo ws, primarily resear chers from diverse sci-
ntific fields, are challenged with the increasing complexity and
cale of their anal yses, whic h involv e (next to their domain knowl-
dge) working with different frameworks , tools , programming lan-
ua ges, and infr astructur e stac ks. Although a fe w tools for cr eat-
ng and maintaining w orkflo ws are a vailable , impro ving user effi-
iency remains an open research area. In this w ork, w e contribute
o this situation by e v aluating the suitability of ChatGPT for com-
rehending, modifying, and extending scientific w orkflo ws. In 3
ser studies with 4 r esearc hers fr om differ ent scientific domains,
e e v aluated the corr ectness of ChatGPT r egarding explainability,

xc hange of softwar e components, and extension when pr ovid-
ng real-world scientific workflow descriptions. Our results show a
igh accuracy for comprehending and explaining scientific work-
ows while ac hie ving a r educed performance for modifying and
xtending w orkflo w descriptions . T hese findings clearl y illustr ate
he need for further r esearc h in this area. 

dditional Files 

upplementary Material. Complete questionnaires for user stud-
es I–III, schema of w orkflo w WF4-Grasslands , verbal task descrip-
ion for user study III, and statistics of the GitHub search results. 
upplementary Fig. S1. Ov ervie w of the Earth observation work-
ow WF4-Grasslands de v eloped by one of the domain experts . T he
 orkflo w aims at understanding differences in long-term changes

1984–2022) in ground cover fractions specific to European grass-
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lands depending on the definition of endmembers (i.e., unique 
spectr al signatur es of a specific material or gr ound cov er) a p- 
pr oximating these fr actions . T he figure highlights the conceptual 
schema and dataflow of the workflow. 
Supplementary Table S1. Feedback form for the first user study 
that investigates the capabilities of ChatGPT to capture the con- 
tent of a w orkflo w description. For each item, w e added a com- 
ment field to report issues and errors in the generated explana- 
tions if the domain expert does not fully apply the content. 
Supplementary Table S2. Feedback form for the second user 
study that investigates the capabilities of ChatGPT in exchanging 
the used tools in a scientific w orkflo w. For each item, we added a 
comment field to report issues and errors in the generated expla- 
nations if the domain expert doesn’t full y a ppl y with the content.
Supplementary Table S3. Feedback form for the third user study 
that investigates the capabilities of ChatGPT to extend a given 

(partial) w orkflo w script. For each item, we added a comment field 

to report issues and errors in the generated explanations if the do- 
main expert doesn’t fully apply with the content. 
Supplementary Table S4. Statistics of the search results for 4 dif- 
ferent scientific w orkflo w systems using the GitHub search engine.
For each system, we use the system name as search term and re- 
strict the result repositories to be created before the date give by 
the column (group). 
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