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Abstract

Selective exposure to online news consumption reinforces filter
bubbles, restricting access to diverse viewpoints. Interactive sys-
tems can counteract this bias by suggesting alternative perspectives,
but they require real-time indicators to identify selective exposure.
This workshop paper proposes the integration of physiological
sensing, including Electroencephalography (EEG) and eye tracking,
to measure selective exposure. We propose methods for examining
news agreement and its relationship to theta band power in the
parietal region, indicating a potential link between cortical activity
and selective exposure. Our vision is interactive systems that de-
tect selective exposure and provide alternative views in real time.
We suggest that future news interfaces incorporate physiological
signals to promote more balanced information consumption. This
work joins the discussion on Al-enhanced methodology for bias
detection.

CCS Concepts

« Human-centered computing — Empirical studies in HCI; Labo-
ratory experiments; HCI theory, concepts and models.
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1 Introduction and Background

Humans form mental models when interacting with online news
based on what they believe, prefer and are familiar with [4]. In
this context, selective exposure describes the tendency to consume
online news that aligns with the worldviews of the user while
avoiding contradictory information [2, 3]. Understanding selective
exposure in Human-Computer Interaction (HCI) can inform in-
teractive systems, for example, bias-aware systems, that promote
diverse viewpoints [1].

Prior research has examined selective exposure through behav-
ioral metrics, including gaze duration and fixation patterns [19].
However, fixations alone do not reliably indicate cognitive engage-
ment [7]. Psychophysiological studies suggest theta band activity as
a marker for memory encoding and decision-consistent processing
[5, 6, 11, 16], but these studies often rely on static stimuli rather
than self-selected reading contexts [2].
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To address these gaps, this workshop paper suggests a follow-up
study of our previous publication [14], where we analyzed the feasi-
bility of Electroencephalography (EEG) and eye tracking for quan-
tifying selective exposure in an online news reading environment.
Unlike prior unimodal approaches using static stimuli [6, 11, 19],
we analyze gaze and EEG measures while participants read online
news [12, 20]. Our findings suggest theta band synchronization as
a potential marker of selective exposure, with significant changes
when reading attitude-congruent versus attitude-discrepant con-
tent. This work establishes a foundation for real-time, multimodal
metrics to study selective exposure in dynamic information envi-
ronments.

2 Metrics for Sensing Selective Exposure

Based on related work, we propose candidate metrics based on
EEG and eye-tracking data to detect selective exposure to capture
cognitive and attentional shifts when individuals process congru-
ent versus incongruent news content. Fixation duration indicates
attentional bias, where longer fixations on attitude-consistent con-
tent and shorter fixations on opposing viewpoints suggest selective
exposure [19]. Theta band power modulation, particularly in the
5-8 Hz range around word onset, reflects differences in cognitive
engagement depending on information congruence [6].

Additionally, we propose investigating Event-Related Potentials
(ERPs) [17] as a measure for selective exposure. ERPs are potentials
that correlate with perceived stimuli, including written, spoken,
and signed words, drawings, photos, and videos of faces and ob-
jects [15]. The cloze probability [9] and the N400 response [21]
provide insights into cognitive effort when processing unexpected
words, with higher N400 amplitudes suggesting greater difficulty
in integrating incongruent information. Extreme fixation durations,
whether longer or shorter than expected, may further indicate
points of intervention.

3 Proposed Experiment

To validate these metrics, we design an experimental study that
integrates EEG and eye-tracking data to examine selective exposure
in online news reading.

3.1 Study Design

The study will involve 40 to 60 participants with diverse ideological
backgrounds. Stimuli will consist of a mix of news articles selected
from a large corpus, allowing for natural reading. Instead of relying
solely on word fixation duration, we apply a shifting mask through
all read sentences to predict next-word probability. Data collection
will include continuous EEG recording using a 16-channel cap and
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Figure 1: Process to collect different input streams to time-synchronized data and to compute sentence fixation times for the

segmentation of EEG data and data annotation.

real-time eye-tracking to capture reading patterns and cognitive
engagement.

3.2 Apparatus

We will integrate eye tracking, EEG, mouse, and keyboard inputs
into a time-synchronized data stream. Figure 1 illustrates the data
collection workflow. Eye-tracking fixation data will segment EEG
recordings, enabling analysis of neural activity associated with
specific words and sentences. This multimodal approach links be-
havioral (gaze), cortical (EEG), and subjective (feedback) data for a
comprehensive study of selective exposure mechanisms.

A Tobii Spectrum eye tracker! will capture gaze at 300 Hz. EEG
will be recorded using semi-dry electrodes with NaCl solution and
an OpenBCI Cython board with a Daisy extension?, providing 16
channels at 125 Hz. Electrodes will be positioned according to the 10-
20 system [10], ensuring impedance remains below 20 kQ. Mouse
and keyboard input will be logged at 1000 Hz.

All signals will be streamed via LabStreamingLayer [13] (LSL Lab
Recorder). Gaze data will be streamed using the Tobii Pro Connector
App?, EEG via OpenBCI GUI%, and keyboard/mouse data via the
Input app’. LabRecorder® will combine all streams into a single
XDF file. Data alignment will be performed using the python pyxdf
package”8.

Next, we will compute fixation times for words and sentences
using EyeLiveMetrics [8]°. A fork of the eye-tracking LSL stream
will be sent via a web socket to the EyeLiveMetrics browser plugin,
which classifies fixations and saccades and maps them to words as

Uhttps://www.tobii.com/products/eye-trackers/screen-based/tobii- pro-spectrum
Zhttps://shop.openbci.com/products/all-in-one- gelfree-electrode-cap-bundle
3https://github.com/labstreaminglayer/App-TobiiPro
“https://github.com/OpenBCI/OpenBCI_GUI
Shttps://github.com/labstreaminglayer/ App-Input
Ohttps://github.com/labstreaminglayer/App-LabRecorder
"https://github.com/xdf-modules/pyxdf

8Time synchronization documentation

“https://git.gesis.org/iir/eyelivemetrics

Areas of Interest (AOIs). Metrics such as fixation duration and start
time will be stored in a database. Sentence-level gaze metrics will
be computed, linking eye tracking with EEG-measured cognitive
processing and participant ratings.

3.3 Data Analysis

EEG preprocessing will involve artifact removal, frequency-domain
analysis [6], and extraction of ERPs [17]. Eye-tracking data will
be analyzed through fixation duration, saccade patterns, and gaze
shifts [19]. We will apply regression models and machine learning
classifiers to map EEG and eye-tracking markers to selective ex-
posure tendencies. Furthermore, we will conduct frequentist and
Bayesian analysis to evaluate the metrics regarding their prediction
reliability of selective exposure. Finally, we will use our results to
implement and evaluate future bias-aware systems [1].

3.4 Challenges and Considerations

One of the primary challenges in using EEG and eye tracking for de-
tecting selective exposure is the variability in physiological signals.
EEG signals are susceptible to noise from muscle activity, environ-
mental interference, and individual differences in neural processing,
limiting their application in real-world applications. In contrast,
eye tracking is a less susceptible measurement modality. Previous
research examined the correlations between EEG and eye-tracking
features [20] to determine whether eye-tracking metrics alone are
sufficient as a standalone measure. Following this approach, we will
apply the same principle in our study on selective exposure. This
finding can establish eye tracking as a single measure for selective
exposure in the real world, where EEG is used for experimental
settings.

Furthermore, the use of physiological sensing in online news
consumption raises ethical concerns regarding user privacy and
consent. EEG and eye-tracking data can reveal political preferences
that are sensitive information for individuals that can lead to privacy
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violations whose scope can be hardly understood by users (cf. [18,
22]). Consequently, we will conduct literature research concerning
the handling of privacy when using physiological sensing to gain
insights into user states.

4 Conclusion

This paper presents an experiment utilizing electroencephalogra-
phy and eye tracking to assess participants’ susceptibility to se-
lective exposure, a cognitive bias that leads individuals to prefer
information that aligns with their existing beliefs while disregard-
ing opposing perspectives. We consider gaze fixations, saccades,
theta power, and event-related potentials as metrics for sensing
selective exposure when reading online news. The final goal of
this research project is to isolate suitable features that predict the
susceptibility of selective exposure. These features can be used in fu-
ture bias-aware systems to increase users sensitivity for unbalanced
information diets.
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