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1Abstract

2Managing the knowledge of assembly workers is crucial due to the valuable personal
3expertise of collected information over time that is hard to articulate. Unfortunately, the
4accumulated knowledge disappears when workers leave the company. Methods to
5record and transfer assembly knowledge between workers rarely exist due to the time-
6consuming documentation of assembly steps. This paper presents Lenssembly, a mobile
7augmented reality system utilizing programming-by-demonstration to record, detect,
8and generate assembly instruction sequences using a head-mounted display. The assem-
9bly instructions are automatically detected using a neural network, preventing the need
10for manual documentation and time-intensive content creation for each assembly step.
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11 In a user study (N ¼ 12) with two different assembly tasks, participants favored the
12 recording functionality of Lenssembly while conducting fewer errors and perceiving
13 less task load than traditional paper instructions. We discuss the implications of our
14 results and conclude how technologies create repositories for storing and transferring
15 expert worker knowledge.

16 Keywords

17 Augmented reality · Artificial Intelligence · Programming-by-demonstration · Industry
18 4.0

19 8.1 Introduction

20 Assembly knowledge preservation has become a relevant factor in manual production
21 lines. Lot sizes become smaller, which is attributed to a decrease in mass production and an
22 increase in personalized production for individual customer needs [1]. Despite an increas-
23 ing degree of automation, manual assembly workers are the driving force to maintain the
24 trend of individual mass production [2]. Gone are the times where pure rote learning of
25 instruction steps was sufficient to perform the manual assembly. Instead, individual
26 production at assembly lines which are expected to rise [3]. Current practices require
27 workers to memorize assembly instructions on-demand, requesting junior and senior
28 workers to adapt their assembly procedures frequently to fulfill the unique product assem-
29 bly requirements. The assembly knowledge is passed from a senior worker to a junior
30 worker in verbal or written form. Common instruction modalities include verbal commu-
31 nication or printed instructions [4]. Such instruction modalities do not scale well with small
32 sizes and frequently require senior workers to teach new instructions.
33 However, the senior workers’ time is precious, and they may leave the company,
34 effectively taking their accumulated expert knowledge with them. The current practice is
35 to reverse engineer the assembly process since no documentation standards for assembly
36 procedures exist. Here, junior workers are confronted with constant variations of assembly
37 instructions that may lead to an increase in working memory demand and error rates [5–
38 7]. The issues above are counterproductive towards an effective knowledge transfer
39 between junior and senior workers.
40 Assistive systems at workplaces have been researched to ameliorate this effect [8]. Such
41 assistive systems may use external displays [9], pick-by-light systems [10], or Augmented
42 Reality (AR) systems, such as projections or Head-Mounted Displays (HMDs) [11] to
43 support workers during their assembly. The feasibility of these systems has been the subject
44 of various evaluations [12, 13] attesting to the positive effects of interactive worker
45 assistance. However, one reason preventing assistive assembly systems from entering the
46 production lines of enterprises is the extended complexity of recording and assembly
47 instructions generation. Here, the initial configuration and the authoring of assembly
48 instructions are time-consuming. Moreover, it requires senior workers proficient with the
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49assembly procedure to prepare them alongside their working function in a company. Those
50requirements might result in an early decline of assistive assembly systems, although these
51systems offer promising solutions to convey assembly knowledge and optimize knowledge
52management.
53This paper presents Lenssembly, an HMD-based prototype recording, generating, and
54displaying assembly instructions using a programming-by-demonstrating approach.
55Workers can record assembly instructions during assembly procedures through image
56data received from the integrated cameras. The assembly steps and associated objects are
57detected using a neural network translating the assembly instruction sequence into a spatial
58holographic representation. Lenssembly supports the modular recording of assembly steps,
59which can be stored to create an assembly instruction repository. Junior workers can then
60utilize this repository to view and assemble manufacturing procedures. We evaluate
61Lenssembly in a user study with two assembly tasks and 12 participants, comparing the
62usability of the teaching procedure and the assembly performance between Lenssembly
63and traditional paper instructions. We find that all participants could create assembly
64instructions and perform all assembly tasks successfully using Lenssembly. Furthermore,
65our results revealed that using Lenssembly contributes to a lower error rate and perceived
66task load compared to paper instructions. Finally, interviews revealed that Lenssembly is a
67suitable tool to preserve the assembly procedures of senior workers, which junior workers
68can use to learn new assembly procedures.

698.2 Contribution Statement

70The contribution of our work is threefold: We (1) present Lenssembly, an AR-based
71assistive system that records and replays assembly instructions using a neural network
72through a user-driven programming-by-demonstration approach. We (2) conduct a user
73study (N¼ 12) with two different assembly tasks to evaluate the efficiency and usability of
74Lenssembly compared to traditional paper instructions. Finally, we (3) discuss how
75ubiquitous technologies benefit from our approach to populate knowledge repositories
76hosting assembly procedures for effective knowledge transfer between workers. We are
77confident that our work paves the way for pervasive knowledge documentation passed to
78other users utilizing ubiquitous technologies.

798.3 Related Work

80In the following section, we first introduce related research regarding AR-supported
81assembly guidance, followed by an outline of assembly authoring and different object
82and action.
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83 8.3.1 Augmented Reality Supported Assembly Guidance

84 The use of AR for assembly guidance instead of other assembly instruction modalities was
85 already the subject of previous research. Boud et al. [14] presented the idea of using AR for
86 manual assembly tasks. Specifically for the effectiveness of assembly task guidance, Boud
87 et al. [14] compared five guidance methods, including conventional engineering drawings,
88 immersive VR, and context-free AR. In a user study where participants had to conduct an
89 assembly task using one of the different methods, they showed that VR and AR were
90 outperforming the traditional 2D engineering drawings. The AR system was further rated
91 as the most effective method. Interestingly, the assembly tasks were up to three times faster
92 using AR compared to the VR methods and more than eight times faster than the traditional
93 engineering drawings.
94 A series of studies showed the positive effects of augmented worker assistance.
95 Henderson et al. [15], and Tang et al. [16] studied the advantages of AR compared to
96 traditional knowledge and assembly instruction transfer methods, finding that AR-based
97 guidance significantly reduced the task completion times, number of errors, and cognitive
98 workload. Nilsson and Johansson [17] investigated the acceptance of AR instructions and
99 confirmed the users’ preference for AR supported instructions over traditional learning
100 methods.
101 Researchers began to evaluate functional prototypes to evaluate augmented assembly
102 instructions. A hand-held assembly system was presented by Billinghurst et al. [18]. A
103 mobile phone is used as a see-through display to view complex models and detailed
104 assembly instructions. Their study shows that AR with overlayed animations resulted in
105 the lowest task completion time than static AR. Westerfield et al. [19] translated this
106 concept to HMDs in a motherboard assembly scenario. Their research concludes that AR
107 assembly guidance can significantly improve learning success. This hints towards a
108 learning effect when lessons are frequently repeated in an interactive learning environment
109 [20, 21].
110 Bannat et al. [22] presented how projection-based systems can support assembly
111 workers. A camera and a projector mounted above the table displays the assembly
112 instruction sequence. A camera is used to track the user’s actions and verify the assembly.
113 Inspired by the approach from Bannat et al., several projection-based systems were
114 presented that improve the assembly performance at stationary and mobile workplaces
115 for workers [12, 23–25] and workers with cognitive impairments [9, 26]. Furthermore,
116 Kosch et al. [6, 27, 28] showed through the use of electroencephalography how the
117 worker’s cognitive workload is effectively reduced using in-situ AR. Hence, assistive
118 assembly systems can be implicitly benchmarked in addition to already established assem-
119 bly system performance metrics [29, 30]. Büttner et al. [31] investigated training duration
120 and learning effects of AR-driven assembly support systems. Their findings conclude that
121 participants show a faster assembly performance when using AR-based assistive
122 technologies in the first 24 h. Their results imply that, while assistive technologies improve
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123the assembly performance during initial training, there may be no improvements for long-
124term use.

1258.3.2 Assembly Authoring, Object, and Action Recognition

126The construction and order of assembly steps require a worker (i.e., the author) to
127demonstrate those steps while a system recognizes these actions. Marker-based approaches
128were initially used to accomplish object detection and tracking. Molineros et al. [32]
129addressed the sensing problem for object tracking and connection detection with the help
130of encoded markers. Each assembly object had a marker that was uniquely recognized and
131tracked. A previously computed assembly graph is used as a basis for the representation of
132all possible states of parts and feature descriptors. Computer vision algorithms are used to
133identify, track, and verify the assemblies and attachments in real-time using the marker.
134Gupta et al. [33] demonstrated an assembly authoring and guiding system for Lego Duplo
135bricks. The system uses color and depth information from a Kinect camera for object
136tracking and action inference. The functionality of the system is restricted to a table surface
137with four marked regions. The user can freely move the assembly object within the play
138area during the guidance and authoring task, where the object is tracked. A virtual replica is
139displayed on a monitor showing the assembly object in the same pose as the in-hand
140physical model. Before a new Lego Duplo brick is added to the physical model, it must first
141be placed in the “add box”, where the size and color of the model are matched against a
142virtual model. If the attachment is not correctly recognized, the user can restart the
143detection process by placing his hand in a recheck box. Finally, objects can be removed
144from the physical model by placing the detached object in the remove box. For the
145alignment of the digital replica with the physical model, a transformation between the
146camera point cloud and the virtual point cloud is calculated with an iterative closest point
147algorithm. New attachments and detachments are detected by calculating a belief distribu-
148tion value over several frames, describing addition and removal candidates, since single
149poses (i.e., single frames) contain insufficient information. This approach can be combined
150with recent studies that utilize eye tracking to understand how assembly instruction
151information is accessed by the individual user [34].
152Neural networks have become a popular method to estimate object and their states for
153further processing in AR. Su et al. [35] proposed a method to estimate the pose of objects
154for AR applications. They use a neural network to detect the pose and state of objects for
155further use in AR applications. Roitberg et al. [36] presented a vision-based approach for
156recognizing human activities in industrial environments using deep learning. The system
157enables the recognition of hand activities like selecting points and objects grasping and
158coarser activities such as assembly and processing of workpieces. Multimodality is used to
159create a single output by combining multiple sensors. For this, data from a Kinect v2 for
160human skeleton tracking, an Asus Xtion Pro for object recognition, and a Leap Motion for
161detailed hand skeleton tracking are fused with a self-developed control framework for data
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162 synchronizing. Activities are classified in multiple abstraction levels using hierarchical
163 hidden Markov models after feature selection and dimensionality reduction. Agrawala et al.
164 [37] proposed design principles on how to display assembly instruction sequences for
165 users. Consequently, Büttner et al. presented a system that records assembly instructions of
166 Lego Duplo bricks using an RGB and depth sensor [38, 39]. The prototype records the
167 user’s actions and visualizes the assembly instructions to the user. However, the assembly
168 instruction reconstruction is limited to a stationary setting and relies on complementary
169 object colors to enable a robust recognition. While the added depth sensor provides a more
170 robust detection based on the objects’ 3D constitution, it may not work reliably for similar
171 objects with similar colors.
172 Neural networks have gained an increase in popularity for object and action detection
173 recently. Shinde et al. [40] present an approach where human actions are recognized using
174 the YOLO object detection framework. Therefore, they trained the object detector with
175 images consisting of appropriate labeled actions. When an action label is detected with a
176 given threshold over multiple frames, the associated action is classified for this period. An
177 object detection algorithm for action classification allowed the classification of activities
178 with a small number of images. It showed that even single images could be sufficient to
179 recognize the action. The work of Bhattacharya et al. [41] introduced an approach for
180 generating AR work instructions by expert demonstration. The execution of the procedure
181 is first recorded and then processed to create the learning environment. For this purpose, the
182 system consists of two parts: the demonstration and refinement phases. In the demonstra-
183 tion phase, a static near-range 3D sensor captures a predefined surface. New steps are
184 detected by continuously checking whether a hand is in the image. The current point cloud
185 is compared with a previous one and checked for a new object when the hand disappears
186 from the image. Subsequently, an algorithm tries to identify the movement of the newly
187 detected object to create an accurate animation. Finally, the refinement phase allows us to
188 modify the recorded steps and add additional text, images, and videos. However, this
189 approach is limited to stationary settings as a near-range sensor must be placed in a fixed
190 position. Recently, Kong et al. [42] presented TutorialLens, an AR authoring and demon-
191 stration system to create instructions for the operation of user interfaces. Users can author
192 interface tutorials using a computer vision-based demonstration recording the 3D
193 coordinates of finger positions. TutorialLens reproduces these finger movements for
194 users who are not proficient with the user interface through a see-through device. Users
195 are then hinted at the correct interaction via AR.
196 Previous research showed how interactive worker assistance could be used to increase
197 assembly efficiency and productivity. However, at the same time, assembly instructions for
198 those assistive systems need to be created, which is a laborious task. Here, past research
199 looked into activity and action recognition to ease the authoring of the assembly
200 instructions. However, previous work required manual interaction with an assistive system
201 to teach assembly instruction procedures or was functional under controlled conditions. We
202 close this gap by presenting Lenssembly. This mobile assembly instruction authoring
203 system ubiquitously records the worker’s interaction with workpieces to automatically
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204generate assembly instruction sequences, where objects are detected using a neural
205network.

2068.4 Lenssembly: An Assembly Authoring and Playback System

207Lenssembly runs as a mobile setup on a Microsoft HoloLens as HMD. Here, Lenssembly
208features an Authoring Mode and Playback Mode to capture assembly steps of a senior
209worker and replay them to trainees or junior workers. Figure 8.1 depicts the concept of
210Lenssembly. Both, the Authoring Mode and Playback Mode use the front-facing camera of
211an HMD (i.e., a HoloLens) to capture changes on the workplace to learn the order of new
212assembly steps (i.e., in the Authoring Mode) or show a digital representation of the next
213assembly step (i.e., in the Playback Mode). Objects and the worker’s hands are detected
214using a trained neural network. We use the YOLOv3 [43] algorithm to detect and track
215objects. YOLOv3 applies a single neural network to the full image, making it suitable for
216the efficient real-time detection of objects. Objects must be annotated beforehand in
217pictures fed into the neural network, resulting in a model embedded into applications.
218The following section describe the details of the Authoring Mode and Playback Mode.

2198.4.1 Authoring Mode: Expert Authoring and Recording Systems

220The Authoring Mode allows expert and senior workers to record the order of assembly
221steps using an automatically “programming-by-demonstration” approach. The recording
222system allows workers to author new assembly task workflows and store them persistently
223in a data model by demonstrating the assembly steps in a workplace. This includes
224assembly steps and hands, tools, and actions that require attachments between several
225components. The Authoring Mode system utilizes a neural network to detect the sequence

HMD
Authoring Assembly 

Instructions

Learning Assembly 
Instructions

Retiring Worker
Teacher

New Worker
Trainee

Database

Fig. 8.1 Application structure of Lenssembly. An Authoring Mode enables to create and author new
assembly instruction procedures. The learning procedure uses the recorded instructions to transfer this
knowledge to new workers via AR. A Playback Mode displays the assembly instructions in AR and
verifies if the assembly is conducted correctly
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226 of the assembly steps and worker actions. The user can manually proceed or wait until a
227 decision countdown expires, upon which the current assembly instruction step is saved.
228 The worker receives continuous feedback about the learned assembly procedure and
229 displayed digital representation. The previously prepared digital twin is saved into the
230 app and displayed upon detecting the associated real-world object. All objects are captured
231 using the point-of-view camera of the HoloLens. Figure 8.2 depicts an illustration of the
232 Authoring Mode view.
233 The worker can choose an existing assembly task or create a new one upon starting
234 Lenssembly. A virtual keyboard or voice commands are used throughout the whole
235 training procedure to provide text input. The worker can create a new work procedure
236 for each step and perform the respective assembly. Lenssembly provides constant feedback
237 on how the final representation will look like for the trainee. The process enables experts to
238 see what the system detected and to intervene if necessary. First, the procedure step is
239 always described as a triplet in the upper right corner of the HMD. In the case of an
240 attachment action, a digital twin is created next to the associated physical objects of the
241 action. To create a digital twin, we use pre-generated 3D models of the individual captured
242 objects utilizing the CAD models to create a 3D representation in AR. The 3D
243 representations of the digital twins are prepared beforehand and displayed when the
244 associated objects’ constellations are detected. A five-second timer is started upon
245 detecting an object. The assembly procedure is saved when the timer expires, and subse-
246 quently, the next step can be performed—the timer restarts when corrections to the
247 assembly are made. The current assembly step training procedure is canceled when the
248 front-facing camera loses the tracking of the objects. If multiple actions are detected during
249 the same assembly step, the expert worker can review and correct the assembly steps using
250 a conflict resolution menu (see Fig. 8.2).

Fig. 8.2 Procedure step suggestion process for a detected connected object in the Authoring Mode.
Left: A connection between the yellow and green object was detected and is added to the assembly
procedure after the decision timer expires. Right: Conflict resolution menu models two detected
actions for the same objects. The user must choose one of the two actions by clicking on the
corresponding model
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2518.4.2 Playback Mode: Trainee Replay and Learning System

252Previously trained assembly instructions can be replayed using a Playback Mode function-
253ality. Lenssembly displays all authored assembly procedures for selection to the user. A
254feedback location (i.e., the worktable) has to be selected by the user to begin with the
255assembly process using a drag and drop gesture. Then, a part list appears that visually
256checks if the assembly parts are available in the workplace (see Fig. 8.3). The assembly
257starts afterward. A previously prepared 3D rendering of a CAD model is rendered next to
258the physical assembly object. A description above the object provides additional details
259about how to perform the assembly. Generated animations are played to display how
260attachments must be performed (e.g., through a predefined blinking arrow displayed
261above the detected object). Also, arrows depict which objects have to be attached. The
262assembled objects turn green, and the application continues with the next assembly step
263when a correct assembly is detected. Wrong actions are displayed on the left side of the
264workplace to inform the user about potential corrections of their assembly. Again, all
265objects are tracked using the integrated point-of-view camera of the HoloLens. Figure 8.3)
266displays how the Playback Mode is displayed to the user.

2678.5 Evaluation of Lenssembly Through a User Study

268We conduct an evaluation of the Authoring Mode and Playback Mode system of
269Lenssembly. We explain the used assembly tasks, provide details about the trained
270model to detect workpieces and describe the methodology.

Fig. 8.3 Lenssembly checks the available parts prior the assembly. Left: A checklist is displayed
and an arrow with a description denotes the part. The assembly begins when all parts are available.
Right: Lenssembly displays (1) the current procedure step, (2) the pre-trained result, (3) potential
wrong actions, and (4) textual information messages that support the assembly

8 Lenssembly: Authoring Assembly Instructions in Augmented Reality Using . . . 207



271 8.5.1 Assembly Tasks

272 We selected two assembly scenarios to evaluate Lenssembly in a user-centric study. First,
273 we use YoloV3 to train a neural network that detects the assembly components, tools, and
274 worker’s hands. Second, we utilize the assembly of a signaling column and programmable
275 logic controller for the user study.

276 Signaling Column Assembly The signaling column assembly task consists of seven
277 components that are stacked on top of each other (see Fig. 8.4). At the lower end is a
278 bracket, and the upper back is closed by a lid. Every component, except the screwdriver,
279 has one or two attachment points located on the top or bottom of the object where other
280 fitting parts can be attached. The bracket can be screwed on to fasten the signaling column.
281 This assembly task was chosen because of the various possible results and procedures that
282 can lead to the same goal. Actions, such as the connections between the components, the
283 worker's hand, and the screwdriver, need to be detected by Lenssembly. We have selected
284 the signaling column assembly task since it can be varied through the order of the
285 attachments without changing the assembly task itself.

286 Programmable Logic Controller Assembly The programmable logic controller (PLC)
287 task contains five hardware components (see Fig. 8.4) that require the worker to mount
288 several components on a mounting rail. The components are placed next to each other. The
289 PLC task is more complex than the signaling column task since the modules placed next to
290 each other and on the components cannot be exchanged. In addition, it requires the frequent
291 use of the screwdriver since all modules need to be fastened.

Fig. 8.4 The signaling column (left) and PLC task (right) that were used to evaluate Lenssembly.
Both assembly tasks require a screwdriver
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2928.5.2 Data Set Collection and Model Training

293We recorded videos of all assembly workpieces in the first step to acquiring image data of
294the objects. Videos were made from different angles and directions to retrieve a diverse set
295of images. Furthermore, all videos were taken against diverse backgrounds and under other
296lighting conditions. We recorded the videos with 30 frames per second. We extracted every
297fifth frame of the videos for the labeling process to get a good distribution of multi-angled
298images. We manually removed blurred images and replaced them with adjacent frames
299from the video. We ensured that all objects in the data set were represented approximately
300equally often during the data collection. In total, we extracted over 5600 frames from the
301recorded videos. Each captured frame contained one or multiple objects. The data set
302included 17 classes from the two previously introduced assembly tasks. A list of all classes
303with their associated assembly task can be found in Table 8.1. Tools (i.e., a screwdriver)
304and hands are listed extra since they are part of both tasks.
305Data annotation and labeling is the process of labeling data for supervised learning
306machine learning methods. This involves the object localization inside a frame and their
307respective manual labeling. We manually labeled the objects with bounding boxes in the
308image using the open-source tool OpenLabeling. OpenLabeling generates the annotation
309and associated labels in the appropriate YOLOv3 textfile format. Darknet2 is used as an
310open-source implementation for YOLOv3. Each file stores information about all bounding
311boxes of the corresponding image, describing their respective class id and position (i.e.,
312xCenter, yCenter, width, and height), and uses normalized pixel coordinates between 0 and
3131. Finally, we achieved a good distribution with only the Hand class having significantly
314more pictures~ (see Table 8.1). After generating the basic truth data, the annotated data set
315was split into a train and a test data set. We divided the data into 85–15 splits using a
316random-based approach. YOLOv3 resized the input images to 608x608 pixels. We used
317the previous labeled images for training, resulting in 11,467 training instances. The number
318of filters was set to 66 in the YOLOv3 configuration file. The final model was trained for
319176k iterations until a training loss of less than 0.1 was reached, resulting in a loss of 0.06.

3208.5.3 Methodology

321We evaluate Lenssembly using a mixed-method study design opting for a within-between-
322subject design. We divided the participants into two groups. The first group (N ¼ 6) was
323asked to assemble the signaling column and PLC unit using the Playback Mode of
324Lenssembly. Afterward, the participants filled a NASA-TLX questionnaire and custom
325Likert scales accompanied by a semi-structured interview. The second group (N ¼ 6) was
326asked to assemble the signaling column and PLC unit using paper instructions. The
327participants were asked to fill a NASA-TLX questionnaire and custom Likert scales similar
328to the first group. In addition to the assembly, the second group was asked to build the
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329 signaling column using the Playback Mode to gain additional qualitative feedback about
330 the mode. Finally, we conducted a semi-structured interview. We counterbalanced the
331 assembly conditions (i.e., assembly of signaling column and PLC unit) according to the
332 balanced Latin square. After the assembly, all participants of both groups were invited to
333 train and test a new assembling procedure of a signaling column using the Authoring Mode
334 to gain additional qualitative feedback.
335 We compare the assembly efficiency of Lenssembly using paper instructions during the
336 participant’s assembly using the Playback Mode. Printed paper instructions are a
337 standardized modality to convey assembly instructions that have been used in research to
338 compare novel assembly instruction modalities [44]. The paper instructions included one
339 instruction step per page. The page has to be flipped to continue with the following
340 assembly instruction. Pictures were generated using available CAD models of the
341 corresponding workpieces. Also, both the recorded assembly procedures in AR and the
342 paper instructions contained written text to support the assembly. We used the Microsoft
343 HoloLens as HMD. Figure 8.5) the study workplace. We outline the independent and
344 dependent variables in the following.

345 Independent Variables We employ the assembly instruction modalities as a factor with
346 two levels (i.e., AR with Lenssembly and paper instructions). Participants were either
347 assembling the signaling column task or PLC task using Lenssembly or using paper

Table 8.1t1:1 Final label distribution of the workpieces, tools, and hands

Class Instances Assembly taskt1:2

Yellow light 659 Signaling columnt1:3

Red light 684 Signaling columnt1:4

Green light 693 Signaling columnt1:5

White light 663 Signaling columnt1:6

Blue light 663 Signaling columnt1:7

Lid 686 Signaling columnt1:8

Bracket 674 Signaling columnt1:9

Load current supply (lid closed) 689 PLCt1:10

CPU (lid closed) 660 PLCt1:11

Digital input/output module (lid closed) 655 PLCt1:12

Mounting rail 580 PLCt1:13

Load current supply (lid opened) 641 PLCt1:14

CPU (lid opened) 650 PLCt1:15

Digital input/output module (lid opened) 665 PLCt1:16

U-connector 632 PLCt1:17

Screwdriver 667 Toolt1:18

Hand 906 Toolt1:19

Total 11,467t1:20
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348instructions depending on the group. In addition, all participants were teaching the signal-
349ing column using the Authoring Mode of Lenssembly after their assembly.

350Dependent Variables We measure the task completion time for every single assembly
351step during assembly with the paper instructions and Playback Mode of Lenssembly. We
352measured the number of errors made for each assembly task. An error is always counted
353when the assembly step itself or the mounting of parts was conducted erroneously (e.g.,
354wrong order of attachments). Here, we subdivide the errors between independent and
355dependent errors. We specify independent errors as wrong attachment steps or missing
356assembly objects. For example, independent errors are subsequently performed without the
357user's dependent error being recognized by the user. Each participant was asked to fill in a
358NASA Task Load Index (NASA-TLX) [45] questionnaire after each assembly procedure.
359Afterward, we conducted semi-structured interviews to gain additional feedback about the
360Playback Mode and Authoring Mode.

3618.5.4 Procedure

362We greeted the participants and provided them with a written description of the study to
363ground each participant regarding their intention. The participants were familiarized with
364the study setup after they provided their informed consent. Furthermore, our participants
365provided their demographic data, previous AR experience, and knowledge about manual
366assembly. A 1-min video an introduction of the Playback Mode of Lenssembly. It
367demonstrated the basic UI elements, controls, and the execution of hand tool actions.
368The study started afterward with the assembly using either Lenssembly or paper
369instructions according to the counterbalanced order.
370In the first part of the study, our participants started with assembling the first workpiece
371after putting on the HoloLens or viewing the printed paper instruction. Here, the participant
372was either asked to assemble the workpiece (see Fig. 8.5 for the fully assembled result). For
373the signaling column, the participants were attaching the subparts of the signaling column

Fig. 8.5 Left: Study setup with the signaling column and PLC assembly task. Printed paper
instructions were used as baseline. The finally assembled (middle) signaling column and (right)
PLC unit
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374 until it resulted in the whole signaling column that consisted of seven objects and six
375 assembly steps. On the other hand, the PLC task consists of five objects and fifteen
376 procedure steps that frequently involve tool actions. In addition, participants filled a
377 NASA-TLX questionnaire after each assembly. Finally, all participants were authoring a
378 signaling column using the Authoring Mode.
379 The second part of the study focused on the Authoring Mode feature of Lenssembly.
380 First, the participants were asked to train an assembly procedure of the signaling column.
381 Again, an introductory video explained how the Authoring Mode works, how it suggests
382 detected actions, and how they can intervene to correct the system if necessary. Next, the
383 participants were invited to build the signaling column in their fashion due to the modular
384 components. The participants were asked to test their training procedures afterward.
385 Finally, a semi-structured interview was conducted that examined the usability and user
386 acceptance of the Authoring Mode. Figure 8.6 depicts the study procedure.

387 8.5.5 Participants

388 We recruited 12 volunteers (three female, nine male) to participate in the user study via
389 mailing lists. The participants’ age ranged between 18 and 55 years. Four participants had
390 no previous experience with AR, where six participants reported rare experience with
391 AR. Two participants were using AR frequently. Six participants had prior experience with
392 the HoloLens. None of the participants had previous experience with manual assembly.

393 8.6 Results

394 In the following, we report the results of the task completion time, the number of errors, and
395 subjectively perceived task load.

Group 1
Lenssembly

Group 2
Paper Instructions

NASA-TLX 
Interviews

Authoring Signaling 
Column

Interviews

NASA-TLX 
Interviews

Lenssembly with 
Signaling Column

Interviews

Fig. 8.6 Illustrated study procedure. We use mixed within-between-subject design where both
groups experience the assembly using either Lenssembly or paper instructions. All participants author
a signaling column after the assembly using the Authoring Mode. Interviews were held between the
sessions
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3968.6.1 Task Completion Time

397Paper instructions required less time compared to instructions displayed in the Playback
398Mode when assembling the signaling column (paper instructions: M ¼ 140.00s,
399SD ¼ 37.80s, AR-based instructions: M ¼ 145.55s, SD ¼ 44.49s). For the PLC task,
400participants require less time using paper instructions (M ¼ 170.00s, SD ¼ 46.84s)
401compared to the Playback Mode (M ¼ 247.00s, SD¼ 98.33s). Potential reasons for longer
402task completion times using the AR-based instructions can be that participants were unused
403to the HMD itself and the potential waiting times between the assembly steps to display the
404next instruction. Figure 8.7 illustrates the mean task completion times.

4058.6.2 Number of Errors and Task Load

406We counted the number of errors conducted with paper and the employed AR-based
407instructions during the Playback Mode. We describe the number of independent and
408dependent errors. The documentation method for the signaling column task had 0.83 errors
409and 1.00 independent errors on average, resulting in 1.83 errors. No error was recorded
410from participants using the Playback Mode. For the PLC assembly task, we measured an
411averaged independent error rate of 0.33, with no independent error occurring during
412Playback Mode (overall error rate: M ¼ 0.33). However, the documentation manual had
413an independent error rate of 1.83 and a dependent error rate of 0.33 (overall error rate:
414M ¼ 2.16). Figure 8.8 shows the averaged number of errors. Furthermore, we analyze the
415NASA-TLX questionnaire to quantify the participants’ subjectively perceived task load.
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Fig. 8.7 Task completion times for the signaling column (left) and the PLC assembly (right). Paper
instructions require less time for complex assembly procedures. The error bars depict the standard
error
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416 We find a higher level of workload for paper instructions (M ¼ 40.84, SD ¼ 1.44)
417 compared to instructions displayed in the Playback Mode (M¼ 29, SD¼ 1.42). Figure 8.8
418 shows the TLX scores between the Playback Mode and paper instructions.

419 8.6.3 Qualitative Results

420 The following section examines the findings of the semi-structured interviews. Most
421 participants liked that they had their hands free during the assembly and did not have to
422 occupy their hands with physical instructions. However, one participant (P9) stated that it is
423 hard to do the actual assembly when handling the AR application and the assembly task.
424 The participant referred to the tool actions, where the search for tools “[. . .] leads to
425 abnormal head movements.” (P9). This is mainly attributed to the narrow field of view
426 of the HoloLens. However, we see this as a technical limitation that will be resolved in the
427 future. Asking about potential helpful features that are present in the application, eight
428 participants stated that they liked the arrow feedback (P1, P2, P5–P7, P10–P12). Two
429 participants added that it helped them to identify the objects even if you do not know what
430 they look like (P7, P12). This was useful in the PLC assembly task. However, one
431 participant found there was sometimes “[. . .] too much information with the arrows”
432 (P3) which led to confusion. P7 liked that you can look at the rendered 3D models from
433 all perspectives and that you can even look into them, providing an experience which
434 would not be possible with documentation or videos. The participants also liked the fact
435 that the application tells you when a task is completed. One participant stated that “It makes
436 you feel good. You can tick off the task, continue, and know that the previous step was
437 correct.” (P10). Some participants were disturbed that certain information was often not in
438 the field of view of the assembly environment. We asked what worked well and what
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439caused problems during the learning process. Four participants stated that they had
440problems carrying out the screwing action because their hands were not recognized (P2,
441P3, P9, P10). Two participants explained that they often did not see the visual feedback
442when the system successfully recognized an object. Thus, they missed the next step in the
443process (P3, P9), resulting in higher task completion times. One participant stated that this
444is probably the case because the confirmation text on the HMD lies on a different level than
445the physical objects (P3). The participant also stated that “[. . .] if you concentrate on the
446assembly and your eyes are focused on it, you simply overlook information on the HMD.”
447(P3). We asked if they liked that the system checks for the correctly assembled objects
448before proceeding to the next step. The participants liked the concept since it detects and
449catches errors early on. One participant thought it is essential for work where a certain level
450of safety must be maintained (P11). We continued to ask technical questions about the
451HMD. First, we asked what features of the HoloLens would need to be improved to
452increase the application’s usability. Ten participants stated that the narrow field of view
453is one of the main limitations (P1–P8, P11, P12). Five participants had problems with the
454resolution as well as the contrast and found it hard to distinguish between certain colors.
455Finally, we were asking questions about the perceived utility and usefulness of the
456Authoring Mode. Most of the participants perceived the recording process as intuitive. One
457participant stated that “[...] this is the next step in learning assembly tasks after
458documentations and video instructions.” (P3). All participants stated that they either
459wanted to set the time for the recording countdown manually or use a dedicated gesture,
460button, or voice command. One participant would like to disassemble objects later in the
461recording to undo previously recorded procedure steps (P9). Overall, all participants could
462imagine using an HMD application similar to the developed one in the future to store their
463assembly knowledge persistently.

4648.7 Discussion

465Can we use ubiquitous technologies to store and preserve assembly knowledge? The
466presented user study results show that our participants could learn the recorded assembly
467tasks and train new assembly procedures using our system. This section discusses the
468results, addresses the remaining challenges, and lays out the vision of user-generated
469knowledge repositories.

4708.7.1 Lenssembly Requires More Time than Paper Instructions

471While the signaling column assembly task did not differ in completion times between the
472AR application and the documentation, the PLC task showed a descriptive difference.
473However, paper instructions outperformed AR-based instructions in terms of task comple-
474tion times during the PLC task. One reason was the tool actions, where the tool has to be
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475 registered by the HMD, hence taking more time than using the tool right away. Further-
476 more, some users intuitively grabbed the screwdriver without looking at the tool to perform
477 the pickup action, ignoring the previous demonstration of handling these actions that led to
478 the need to register the tool again. This is consistent with the collected qualitative
479 statements, where participants stated thfat the special performance of tool actions could
480 lead to unusual head movements. Also, some participants had problems performing hand
481 tool actions since their hands were not reliably detected. One reason could be that the data
482 set contained hand images from people with a similar handshape. A more diverse set of
483 hand images can lead to a more robust model. The additional actions that should be
484 performed with the tools were partially forgotten and led to problems during execution,
485 contributing to longer execution times.
486 Although the overall assembly with AR took longer than paper instructions, participants
487 were faster going through the checklist for the available parts. The participants stated that
488 the arrows and named labels at the location of physical objects are more convenient than
489 searching for objects using images in the paper instructions. Verifying the availability of
490 the required assembly parts was favored by the participants. However, another issue that
491 arose during the assembly was the narrow field of view of the camera, preventing a
492 successful detection of the performed assembly. We believe this can be circumvented by
493 adding additional wearable cameras around the HMD or improvements to the existing
494 camera. Participants also complained that the field of view is limited. We see this as a
495 technical limitation that is likely to be resolved with future releases of HMDs (e.g., the
496 HoloLens 2).

497 8.7.2 Lenssembly Elicits Fewer Errors and Less Task Load

498 We observed that text written in the paper instructions was more likely to be ignored than
499 visually represented in AR. We attribute the higher number of errors for paper instructions
500 compared to AR-based instructions to these observations. The participants confirmed this,
501 who either did not read textual representations of assembly instructions or missed them.
502 Our results imply that if time is not a critical factor, AR-based instructions lead to fewer
503 errors, hence maintaining a quality level of the assembled product compared to paper-based
504 instructions. Contrary to this, paper-based instructions can be used if time is a critical
505 component. An analogy can be drawn toward the perceived task load. It is advisable to use
506 AR-based instructions when the user’s perceived workload should be kept minimal. For
507 example, safety-critical assembly scenarios benefit from the Playback Mode used by junior
508 workers.
509 Finally, we believe Lenssembly is successful in conveying assembly instructions to
510 junior workers. Overall, the results show that the learning environment with automatic
511 object detection and feedback generation led to successful assembly procedures for all
512 participants. It reduces the error rate compared to printed documentation by providing
513 feedback and preventing dependent errors. The current restrictions lead to the same or
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514slower completion times compared to documentation. However, most participants stated
515that learning with Lenssembly was more engaging and that after the assembly, instruction
516was known. The HMD is not needed anymore after completing several assembly trials. We
517believe that Lenssembly provides an entry into the assembly of complex workpieces, which
518is not needed anymore after the worker gets used to the assembly procedures.

5198.7.3 Recording Assembly Instructions

520The evaluation of the recording subsystem showed that the participants were able to record
521a custom signaling column assembly procedure. All participants were able to record their
522assembly procedures after a short introduction. Similarities between colors, such as red and
523yellow, were challenging to distinguish for the deployed classifier. However, since the
524error only occurred in one room, the problem could have been different lighting conditions.
525Most participants built the signaling column with all available components and wanted to
526see their automatically generated learning environment afterward.

5278.7.4 Limitations

528The presented implementation and the study design are prone to certain limitations. The
529neural network can only detect an object that has been trained before. This requires
530laborious labeling of data which was performed manually during this study. Furthermore,
531this could have caused some noise in the training data since the bounding boxes do not
532cover the exact shape of the assembly workpieces. However, 3D representations of
533workpieces are usually available as a CAD model. We believe that these models can be
534exploited to generate a neural network for the parts and the respective assembly order,
535hence obviating the need for manual labeling. Another limitation affecting the study is the
536limited field of view of the HoloLens itself. However, this is a technical limitation that will
537be improved through future developments. A final fundamental limitation is the manual
538preparation and association of the digital twins towards the detected objects. The arrange-
539ment of the different hologram parts has to be stored into Lenssembly directly to be
540displayed upon detection of the assembled object. However, we are confident that future
541work can use the detected object model to generate the digital twin on the fly. Finally, we
542acknowledge that our sample partly represents persons who have experience with the
543HoloLens. This experience can skew our results in favor of the HoloLens. However, we
544are confident workers will achieve a similar performance after a brief settling-in period.
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545 8.7.5 Future Work

546 Our research provides the first step of creating a knowledge repository that is not limited to
547 the interactive representation of assembly instructions alone. In the first step, we want to
548 utilize existing 3D CAD models to automatically generate a neural network that can detect
549 single workpieces in an assembly procedure to create assembly instructions automatically.
550 Furthermore, we envision creating a user-generated repository that conveys assembly
551 instructions enriched by individual assembly styles that optimize previously known assem-
552 bly procedures. Also, we will investigate potential learning effects that emerge during the
553 use of AR-based instructions. Here, we are interested in differences in using assembly
554 instruction in different modalities, including the required length of use and assembly
555 performance. Finally, we will incorporate the suggestions made by the participants with
556 a subsequent evaluation of learning effects for various assembly scenarios.

557 8.8 Conclusion

558 This paper presents Lenssembly, an AR-based system that enables the knowledge transfer
559 of assembly instructions between senior and junior workers. We developed an AR appli-
560 cation for an HMD that enables the flexible authoring of assembly instructions. Workers
561 can record their assembly procedure using a programming-by-demonstration approach,
562 reducing the complexity of recording assembly instructions while generating instructions
563 simultaneously. As a result, the laborious content creation of assembly instructions is no
564 longer required. In a user study with 12 participants that evaluates the Authoring Mode and
565 Playback Mode, we find a reduced number of assembly errors and self-reported task load
566 when using Lenssembly compared to paper instructions. However, Lenssembly elicited a
567 higher task completion time compared to paper instructions. Interviews revealed that
568 training new assembly procedures was a pleasant experience that all participants have
569 successfully conducted. We conclude that Lenssembly eases the authoring of further
570 assembly instructions for assistive systems and supports junior workers to learn new
571 assembly instruction procedures. Our work describes how recent advances in artificial
572 intelligence can be used to preserve assembly knowledge by creating user-generated
573 assembly sequences that others can retrieve for learning purposes. We are confident that
574 our work paves the way for future usable assembly systems that automatically generate
575 assembly instructions.
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