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Figure 1: Left: User solving math tasks which induces cognitive
workload. Right: Measured pupil dilation used for displaying suit-
able math task complexities
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Abstract
Cognition-aware systems acquire physiological data to de-
rive implications about physical and mental states. Pupil
dilation has recently attracted attention in the HCI com-
munity as an indicator for mental workload. The impact of
mental workload on pupillary behavior has been extensively
examined. However, systems making use of these mea-
surements to alleviate mental workload have been scarcely
evaluated. Our work investigates the expediency of task
complexity adaption based on pupillary data in real-time.
By conducting math tasks with different complexities, we
calibrate a complexity adjustment system. In a pilot study
(N=6), we evaluate the feasibility of changing task complex-
ity using two different complexities. Our findings show less
perceived mental workload during task complexity adapta-
tion compared to presenting high task complexities only.
We show the potential of pupil dilation as a valid metric
for assessing mental workload as a modality for cognition-
aware user interfaces.
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Introduction and Background
Context-aware computing has grown in recent years, pro-
liferating devices and day-to-day life. Adapting system be-
havior according to location, physical activity, or social inter-
actions is accepted and often expected by users. Sensing
emotional states has attracted attention as a modality for
context-aware computing and has been researched thor-
oughly in the domain of affective computing [4, 15]. Addi-
tionally, the analysis of cognitive processes has great po-
tential for providing adapted content from a mental point of
view [5]. Such cognition-aware systems analyze cognitive
processes, derive implications from psycho-physiological
states, and provide tailored content based on the user’s
individual cognitive state. Various experiments in Human-
Computer Interaction (HCI) depend on measures for quan-
tifying cognitive effort. To specify the complexity of experi-
mental conditions, questionnaires such as the NASA-TLX
[7, 8] or the Driver Activity Load Index [13], are used to
derive cognitive implications which depend on subjective
perceptions of participants. However, these measures of
mental task complexities are often generalized for all par-
ticipants, leading to a lack of individual user dependent
cognition-awareness for later designed systems.

Figure 2: Exemplary impact of cog-
nitive workload on pupil dilation.
Top: Measured pupil diameter un-
der low cognitive workload. Bot-
tom: Measured pupil diameter un-
der high cognitive workload.

Recently, pupil dilation has attracted attention in the HCI
community as a measure for cognitive workload (see Fig-
ure 1). Demanding the short-term memory frequently over
a timespan causes cognitive effort [1, 2, 9, 10, 11], a mental
process which extends the pupil diameter (see Figure 2).
Eye trackers are used to retrieve eye gaze positions which
can be used at the same time to evaluate pupillary data in
real-time. Using such a metric as an assessment of cog-
nitive workload can be utilized by applications to provide
help and assistance for users when high cognitive work-
load is detected. For example, cognition-aware systems
can provide assistance in real-time during a cognitively de-

manding task. Furthermore, the usability of interfaces can
be evaluated by conjunctively assessing pupil diameter and
eye gaze during user interaction. Evaluating pupil dilation
to infer cognitive workload has been examined by various
researchers before. Benedetto et al. [3] explored the im-
pact of cognitive workload on pupil dilation and eye blink
duration. Since pupillary measurements are error prone to
lighting conditions, Pfleging et al. [14] proposed a model
for classifying cognitive workload of pupil dilation under dif-
ferent lighting conditions. Kiefer et al. [12] evaluated the
pupil diameter under different task difficulties to assess the
perceived task complexity. Gollan et al. [6] examined the
assessment of pupil dilation under cognitive workload in
real-time. Hess et al. [10] investigated the impact of simple
mental processes, such as solving one and two-digit multi-
plications, on the pupil diameter. Zbrodoff and Logan [16]
found a correlation between higher pupil extensions and in-
creasing math exercise complexity. By using multiplication
tasks, a higher pupil diameter was measured when multiply-
ing two-digit numbers than one-digit numbers.

Previous work has explored the influence of changing pupil
diameters during different task complexities and possi-
bilities to classify cognitive workload based on pupil ex-
tensions. However, the presented theoretical concepts
have not been evaluated in the context of a real-world task,
where the complexity of presented content is adapted ac-
cording to the mental resources of the user. In our work, we
investigate the impact of adjusting the complexity of a cog-
nitive inducing task in real-time using pupillary data. Task
complexity is set to a suitable difficulty to keep users en-
gaged, thus becoming more difficult or easier depending
on current mental workload measurements. This is com-
plemented by presenting and evaluating a proof-of-concept
application, which sets its task complexity based on pupil-
lary data to prevent mental underload or overload.
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Prototype Application
To examine the usefulness of adapting task complexity
based on pupillary data, we constructed a prototype capa-
ble of evaluating pupil dilation measurements in real-time.

Recording and Feedback Setup
A mobile eye tracker from Pupil Labs1 is used to receive
pupillary data. Data was updated at 30 Hertz and processed
on the attached computer. An external screen is used to
display stimuli. To avoid distractions during the experiment,
the setup was divided into two areas using separators, re-
spectively for the experimenter and participant. The ex-
periment was conducted in a room without windows and
constant lighting conditions. The stimulus monitor had a
resolution of 1920× 1080 and a screen size of 23 inches.

Classifier
Two baseline trials are conducted in the beginning to obtain
ground truth data about pupil dilation during an easy and
a difficult math task, each lasting three minutes. A single
complexity was assigned to every trial (easy /difficult). The
trained classifier is then used to adaptively control the com-
plexity of the displayed multiplications in a third trial. The
classifier aims to estimate low and high cognitive workload
based on the data retrieved from the two baseline tasks.
The prototype simulates a cognition-aware system by set-
ting task complexity to easy if high mental workload is mea-
sured. In contrast, task complexity is set to difficult when
low cognitive workload is classified from the previous base-
line measurements.

To assess cognitive workload from the users’ pupil dilation,
we trained individual support vector machines (SVMs) with
a linear kernel to infer required changes of task difficulty in
real-time. We used the individual pupil dilation as the only

1www.pupil-labs.com - last access 2018-02-22

feature. We defined two classes, easy and difficult. The
classifier was trained individually for every participant after
the two baseline trials. In the last trial, the previously trained
classifier is used to predict cognitive workload. The task
difficulty is set to the opposite task complexity to force cog-
nitive alleviation or effort. The person-dependent classifier
accuracies ranged between 64% and 99% (M = 79%,
SD = 0.16%) resulting from a k-fold cross-validation with
k = 5.

Study
We conducted a pilot study to evaluate the feasibility of
changing task complexity based on pupil diameter mea-
surements as an indicator for cognitive workload. The study
configuration conforms the previously described prototype.

Cognitive Task
To induce cognitive workload, we use a multiplication math
task with two different complexity levels including one-digit
and two-digit multiplications. Both complexities lead to dif-
ferent pupil dilations [1, 2, 16]. To add a time constraint,
the multiplication math tasks were moving centered from
the top to bottom of the screen within five seconds. During
the time limit, participants were asked to type the correct
solution on a keyboard number pad. When the multiplica-
tion reached the bottom of the screen, it disappeared and
a new multiplication is displayed at the top of the screen. If
the user fails to enter a solution during the given time frame,
an error is counted. If the solution entered during the time
is correct, the multiplication disappears and a new multipli-
cation task is displayed at the top of the screen. The com-
plexity is divided into easy and difficult. The easy condition
uses numbers ranging from 0 − 9, randomly selecting two
numbers which have to be multiplied together. In the diffi-
cult condition, two numbers are randomly chosen, where
the first number ranges from 10 − 19 and the second from
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0− 9 (see Figure 3). Numbers are constantly displayed in a
black font on a gray background (RGB: [150, 150, 150]).

Figure 3: Multiplication math task
with equations moving from top
to bottom comprising two different
complexities. Left: Easy multiplica-
tion containing one-digit numbers.
Right: Difficult multiplication com-
prising a two-digit number and a
one-digit number.

Participants
Six participants (4 male, 2 female) took part in the pilot
study, ranging from an age between 22 and 34 years (M =
29.17, SD = 4.41). All participants were computer sci-
ence students or researchers. Participants had normal or
corrected-to-normal vision. The overall duration of the study
was approximately 15 minutes. Before the start of the ex-
periment, participant signed an informed consent form and
provided their demographic data.

Procedure
First, we explained to the participants the study proce-
dure and familiarized them with the setting. The mobile
eye tracker was then calibrated. The study consisted of
three trials; two baseline multiplication trials (easy /difficult)
and one adaptive multiplication trial. The duration of each
task was three minutes. The order of the first two base-
line trials was counterbalanced according to the balanced
Latin square. The pupillary data from the baseline tasks
was used to derive an SVM classifier capable to distin-
guish between cognitive workload induced by a easy or
difficult task. During the adaptive trial, the trained user-
dependent classifier is used to adaptively set the complexity
of the multiplication task. The complexity is set by classify-
ing measured pupil diameter data in five-second intervals.
If the classifier estimates a high diameter difference, the
task complexity is set to easy to avoid mental overload. In
contrast, the task complexity is set to difficult if the classifier
estimates a low pupil diameter to avoid mental underload. If
the classifier determines a complexity change during a mul-
tiplication task, the new task complexity is adjusted to the
next appearing multiplication. After every trial, participants

Figure 4: Averaged differences of pupil diameter per participant
between easy and difficult task complexities as well as easy and
adaptive task complexities. The difference between the easy and
difficult task complexity is higher compared to the adaptive task
complexity except for two participants (p5, p6). The whisker lines
depict the standard error.

filled a NASA-TLX [8] questionnaire to obtain subjectively
perceived workload during the trials.

Exploratory Results
Overall, the easy multiplication condition consisted of 618
displayed calculations, the difficult condition 420 displayed
multiplications, and 466 displayed calculations for the adap-
tive condition. Least errors were measured during easy
multiplication, comprising 571 correct (92%) and 47 wrong
(8%) answers. Most errors were made during difficult trials
with 255 correct (61%) and 165 wrong (39%) answers. The
adaptive condition placed itself in between with 313 correct
(67%) and 153 wrong (33%) answers. We investigate indi-
vidual differences in the pupil dilation measures between
the different task complexities. The differences in the easy
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and difficult task complexity ranged between 0.05 and 0.87
millimeters. The difference between the easy and adaptive
complexity ranged between 0.05 and 0.85 millimeters. Fig-
ure 4 shows the difference between the averaged pupillary
measurements per participant. The mean number of com-
plexity switches during the adaptive condition results in 2.6
complexity changes for a total of 466 multiplication tasks
during the adaptive condition. The mean NASA-TLX score
(see Figure 5) reveals lowest subjectively perceived work-
load during the easy condition (M = 9.75, SD = 1.45) and
highest workload measurements during the difficult com-
plexity (M = 12.05, SD = 2.15). The adaptive condition
was rated between both baseline trials (M = 11.30, SD =
2.14).

Discussion
In this study, we explored the impact of adapting the com-
plexity of a cognitive workload inducing task based on the
measurement of pupillary changes.

Adaptive User Interfaces
Our findings support the use of pupil dilation to detect men-
tal effort. Assessing mental workload in real-time to change
the task complexity has shown its feasibility when partic-
ipants performed adapted math tasks. The adaptive trial
shows how computing systems can make use of the pupil
diameter to create engaging user interfaces while avoiding
the perception of high or low mental workload.

Creating User Specific Models
The study shows the viability of individually trained clas-
sifiers. Since physiological measurements differ among
users, person-dependent measurements cannot be avoided.
Limited to pupillary data, encouraging results were achieved
by allocating short training times to create a user-specific
model. This is supported by averaged pupil diameter mea-

Figure 5: Averaged NASA-TLX scores for the different task difficul-
ties. The whisker lines depict the standard error.

surements and subjective feedback provided through NASA-
TLX questionnaires.

Conclusion and Future Work
This work investigates the assessment of cognitive work-
load based on pupillary data to change the complexity of a
task in real-time. In a preliminary study, we trained person-
dependent classifiers through math tasks with different
complexities. During an adaptive trial, task complexity was
changed depending on the classification of pupillary data.
The results show the practicability of using pupillary data
in controlled environments to evaluate user interface adap-
tation mechanics and user interface assessment. In future
work, we plan to compensate noise introduced by varying
illuminations through in situ light measurements. Further-
more, we investigate the suitability of distinguishing multiple
task complexities in a second study. This includes a large
scale sample size to derive a general classifier which can
be dynamically deployed to evaluate user interfaces.
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