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Manual assembly at production is a mentally demanding task. With rapid prototyping and smaller production
lot sizes, this results in frequent changes of assembly instructions that have to be memorized by workers.
Assistive systems compensate this increase in mental workload by providing “just-in-time" assembly in-
structions through in-situ projections. The implementation of such systems and their benefits to reducing
mental workload have previously been justified with self-perceived ratings. However, there is no evidence
by objective measures if mental workload is reduced by in-situ assistance. In our work, we showcase elec-
troencephalography (EEG) as a complementary evaluation tool to assess cognitive workload placed by two
different assistive systems in an assembly task, namely paper instructions and in-situ projections. We identified
the individual EEG bandwidth that varied with changes in working memory load. We show, that changes
in the EEG bandwidth are found between paper instructions and in-situ projections, indicating that they
reduce working memory compared to paper instructions. Our work contributes by demonstrating how design
claims of cognitive demand can be validated. Moreover, it directly evaluates the use of assistive systems for
delivering context-aware information. We analyze the characteristics of EEG as real-time assessment for
cognitive workload to provide insights regarding the mental demand placed by assistive systems.
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1 INTRODUCTION
Modern manufacturing processes are increasingly defined by smaller lot sizes of bespoke designs.
Gone are the days that require workers to act purely on rote learning. Instead, novel assembly
instructions must frequently be committed to memory as soon as new designs and components
enter into the production pipeline [28]. Thus, assembly is increasingly defined by its cognitive
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(a) (b)

Fig. 1. (a) Paper-based and (b) projected in-situ instructions at a manual assembly workplace. An EEG
headset measures the level of working memory. This provides objective insights about cognitive processes
during the usage of assistive technology in manual assembly processes.

instead of physical demands. Manual assembly places workload on cognitive processes that underlie
executive working memory [3, 29]. Given that cognitive workload impacts the individual task
performance [18, 37], it follows that profit margins may suffer as a result of reduced production
throughput and error-prone manufacturing.

Assembly instruction systems have been introduced to ameliorate this. Such assistance consists
of instructions on printed paper, external displays, or in-situ instructions projected directly on the
assembly workplace. Such systems are designed to simultaneously reduce cognitive demands and
optimize performance. Indeed, previous research has suggested that design manipulations of the
visual representation and modality of assembly instructions can have a significant influence on
self-reported measures of cognitive workload [28, 44]. Strong arguments have been made for the use
of in-situ instructions that present just-in-time assembly instructions [13, 25]. Furthermore, visual
in-situ instructions integrated into the workplace showed a large increase in performance [27, 48].
Novel user interfaces – for instance, assistive instruction systems – are often evaluated for

their improvements regarding performance or subjective workload in order to justify their im-
plementation over the status quo. Performance is typically assessed in terms of error rate and
assembly completion time, while cognitive workload is often assessed using self-rated measures or
semi-structured interviews [22]. Commonly used self-rated measures include the NASA-TLX [35]
or the simpler RSME [7, 86]. However, these metrics are susceptible to individual differences in
subjective reporting. For instance, extroverted confident individuals might be less likely to indicate
workload to the same degree as introspective modest individuals [39]. Furthermore, novel assistive
systems and visualizations might introduce a novelty effect. This means, that participants provide
self-reported scores which are influenced by the excitement over a new technology [81]. Addition-
ally, subjective reports can only be performed after test completion and rely on cognitive processes,
namely working memory. Such methods are limited in their objective and real-time assessment of
cognitive workload when evaluating assistive technologies.
Therefore, physiological methods are increasingly employed as a means to estimate mental

states, such as cognitive workload [34, 45, 47]. For example, Brain-Computer Interfaces [2, 79]
(BCIs) have been used successfully to assess the complexity of presented information in a variety
of scenarios [2, 46] (see Figure 1). A BCI records brain activity in real-time and computationally
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derives estimates of a targeted mental state to either provide feedback about the physiological
state of the user or enable device control through neuronal activity. Increasingly, advances in
brain-recording technology and neuroscience findings contribute towards a vision of ubiquitous
BCI deployment in everyday places of work and play [10, 42, 80]. In the current context, a BCI
for cognitive workload sensing could be used in collaborative work settings by allocating tasks
to workers who are less fatigued [21, 22] or provide adaptive assistance whenever necessary [23].
However, for this future to be realized, it is necessary to ensure that recorded estimates are robust
and valid for its given setting.

BCIs may record brain activity via Electroencephalography (EEG), which has been preferred for
its lightweight and mobile hardware, high temporal resolution, and non-invasiveness nature [33].
EEG measures neuronal signals from scalp electrodes, relative to a reference electrode [20, 32].
Previous research has utilized EEG as a measure for cognitive workload to evaluate task difficulties
in real-time [30, 31, 75]. To some extent, it is possible to rely on EEG to classify cognitive workload
in real-time, particular those that involve working memory processes [33]. This makes EEG to a
viable alternative or complementary metric for mental workload measures.

In this work, we employ a lightweight mobile EEG headset to evaluate cognitive workload,
specifically executive working memory load, to provide a direct estimation of the cognitive benefits
of implementing in-situ projection systems. Such systems are expected to achieve early market
penetration [16, 49, 76] and allow to be used as an instantaneous evaluation tool for novel user
interfaces as well as for assistive technologies. In a user study (N=12) we investigate differences in
workload measures during manual assembly with two different instruction systems, namely printed
paper instructions and projected in-situ instructions. We analyze EEG power in the individual alpha-
frequency bands to infer cognitive workload on working memory processes. Previous research
measured a decrease of frequencies in the alpha-band the more working memory participants
experienced [30, 31]. We find that in-situ instruction systems significantly reduce executive working
memory. This is complemented by a discussion considering our results and implications to assess
working memory in real-time, where novel assistive technologies can be evaluated regarding the
required mental demand using EEG. Finally, we describe a physiologically-based methodology
about how to evaluate assistive technologies for manual assembly tasks and present an experimental
protocol to assess assistive systems regarding working memory.

2 BACKGROUND
Previous research has investigated effort in examining EEG data while subjects perform specific
tasks. We summarize relevant past research regarding (1) the use of EEG as a non-invasive method to
obtain electrical potentials generated by the human brain, (2) how working memory is determined
by EEG, and (3) how EEG measures are deployed in real-world scenarios.

2.1 Brain Sensing
The human brain represents the information and control unit of humans. It consists of approximately
100 billion neurons [36] which underlie the human cognition. This includes information processing,
where neuronal activity can be measured non-invasively with the use of scalp electrodes. Neurons
communicate by exchanging electrical activity using neurotransmitters, a chemical transferred
between neurons. In this work, we focus on measuring this electrical activity via an EEG headset.
EEG is commonly leveraged in clinical application and yields a non-invasive method to estimate
brain activity [56, 63, 83]. By placing conductive electrodes on a scalp, electrical potentials between
1µv and 100µv (microvolts) are measured. These measures are relative to a reference point, which is
another electrode attached to the scalp or earlobe [20, 55]. Typically, changes in electrical potentials
are observed by analyzing frequency bands. For example, previous work found a drop in frequencies
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of alpha (8 - 12 Hz) and an increase of theta (4 - 8 Hz) [43] when subjects have to raise mental
capacities. An alternative approach is the assessment of Event-Related Potentials (ERPs) to infer
mental workload [9, 70]. However, ERPs are averaged over many trials to filter out noise which
makes it unsuitable for real-time assessment.
Unfortunately, EEG measurements are prone to noise during measurement. Head movements,

muscle contractions, eye movements, or eye blinks influence the electromagnetic field on the scalp.
Researchers are concerned about this and invest great effort to reduce the number of measurement
artifacts [14]. However, artifacts cannot be fully avoided. The usage of BCIs often requires a
controlled environment comprising minimal body movements by the user. Such conditions are
often impractical for end users due to its high experimental control. However, recent technical
advances ameliorate these disadvantages [61]. Furthermore, BCIs have found access to the consumer
market, priced between $2491 and $16002. Affordable open source solutions can be acquired within
the OpenEEG Project3. In our work, we use such a low-cost EEG headset to investigate its feasibility
regarding the assessment of working memory.

2.2 Quantifying Cognition using EEG
Much research has been performed to define and quantify cognitive workload. Sweller et al. [77, 78]
defined three key components of cognitive workload comprising intrinsic, germane, and extraneous
cognitive workload. Intrinsic workload describes the inherent complexity of the task itself, and can
therefore not be manipulated by external sources. Germane workload describes the cognitive effort
subjects need to comprehend and process new information. Extraneous workload describes the
cognitive demand to understand and process the visual representation of the underlying information.
Experiments often evaluate extraneous workload by influencing the visualization of information.
Intrinsic and germane workload is not easy to manipulate since they are task related or depend on
the individual mental capabilities.
More precisely, cognitive workload defines the mental effort being used in working memory,

which is responsible for fast information processing and limited within its capacities [3]. Gevins
et al. [31] invested effort to quantify the occurrence and amount of working memory using EEG.
They found a decrease in alpha frequencies and an increase in theta frequencies during cogni-
tively demanding tasks. Jensen et al. [38] replicated their results using a memory demanding task.
Scharinger et al. [72] also showed a variety of other tasks which correlate with increased working
memory. However, working memory strongly depends on individual attributes, such as age or
neuronal health state [43].
Machine learning became popular to classify mental states using EEG data [52–54] and has

been used to estimate workload in different contexts [60]. Lee et al. [51] collected EEG data of
participants to classify cognitive demanding tasks according to their difficulty. Participants were
asked to do different cognitive tasks, including mental rotation and mental arithmetic. Instead of
using previously recorded data associated with similar tasks [1, 41], data was collected from scratch.
Using machine learning, a classification accuracy of 92.4% was achieved. However, the experiment
has not focused on classifying working memory itself. An approach to classify working memory
was undertaken by Grimes et al. [33]. Participants performed a N -back task, which is a popular
task to demand the short-term memory [58, 66]. Their study included four different difficulties,
where their results yielded a classification accuracy of 99% for binary classification and an accuracy
of 88% for classification between four classes of difficulty. Nonetheless, a medical EEG headset was

1www.choosemuse.com - last access 2018-05-28
2www.futurehealth.org/bm_at1.htm - last access 2018-05-28
3www.openeeg.sourceforge.net - last access 2018-05-28
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(a) (b) (c)

Fig. 2. (a): Snippet from the used Lego Duplo paper instruction. The necessary brick can be seen in the upper
left corner. A red arrow denotes the final assembly position of the brick. (b): Highlighted box using in-situ
projections. (c): Projection of the target position of a selected brick.

utilized for their experiment, which is hard to deploy on the fly. Furthermore, an artificial task was
used to measure the level of working memory instead of using a real-world scenario.

2.3 Evaluating and Adapting User Interfaces
Besides using EEG for quantifying and classifying working memory researchers have employed this
measurement to enable the development of cognition-aware systems. Zander et al. [85] investigated
how passive brain activity measurements can be leveraged to handle take-over tasks during
autonomous driving. Prinzel et al. [50] researched how task allocation can be carried out efficiently
using EEG-related metrics. Finally, El-Komy et al. [17] used physiological sensing devices in an
assembly environment comprising additional artificial tasks to measure the workers’ stress levels.
However, only results from the emotion and arousal scores retrieved by the integrated BCI interface
were reported.

To the best of our knowledge, no prior work concerning the evaluation of EEG to derive cogni-
tive workload during manual assembly and with different instruction systems has been done. In
this work, we close this gap by utilizing standardized manual assembly tasks with two different
instruction systems. We record and compare EEG data in a repeated measures experimental design
to evaluate EEG as a valid assessment tool for cognitive workload induced by assistive technologies
during manual assembly.

3 ASSEMBLY INSTRUCTION SYSTEMS
We identified two different instruction systems from related research, which are different regarding
subjective perception [25]. Within both instruction systems, Lego Duplo bricks are assembled. This
task resembles a full replacement for a real assembly task and enables to change the complexity of
the task without changing the task itself [25, 48].

3.1 Assembly Instruction Visualizations
Informed by related work, two instruction visualizations are identified which differ in overall
interpretation complexity [25]. We have chosen paper instructions, as they represent the current
state of the art when it comes to transfer assembly instructions in manual assembly lines [24].
This is compared to projected in-situ instructions, where assembly instructions are projected on
the workplace. We have chosen these two assembly instruction modalities as subjective measures
suggest an alleviation of workload for in-situ projected instructions compared to printed paper
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instructions [25, 27]. In the following paragraphs, we describe both instruction systems used in the
study in detail.

3.1.1 Paper Instructions. We printed single-sided instructions on an A4 sheet of paper. Each
work step was printed on a single page, such that the position and size of every step were the same.
The paper instructions were put together in the correct order using a folder and positioned to the
left or right of the users, depending on their handedness. The folded assembly instruction remained
the same position relative to the user’s position. The instruction shows a brick on the upper left
corner which is required to select for completing the current work step. Marked by an arrow, the
assembly instruction shows the final position of the brick (see Figure 2a).

3.1.2 In-Situ Instructions. We compare the presented paper instructions with in-situ projections
displaying assembly instructions. We use a similar system as shown by Funk et al. [26]. A projector
mounted above the work table displays the next assembly step on the workspace. A Kinect v2
validates each work step of the Lego Duplo construction. This includes the verification of correct
item selections from bins by observing the hand movements of the participant (see Figure 2b) and
assembly steps by comparing the (see Figure 2c). The next work step is displayed when the current
work step is performed correctly. The system is waiting until the current work step is carried out
correctly and does not proceed if the user makes an error.

4 MANIPULATING COGNITIVE WORKLOAD
Wemanipulate working memory to assess the validity of our setup. We use a visual N -back task [58]
with two levels of task difficulty (N= 0 and N= 2) to induce cognitive workload, namely executive
working memory. In the N -back task a series of numbers is presented (i.e., numbers). Each symbol
appears at a fixed position. Upon symbol representation, participants have to decide if the current
symbol is equal to the symbol shown N steps ago. Participants have to keep a sequence of N
symbols constantly in their memory, decide if a match occurred, and then update the sequence in
their memory.
For example, the 0-back task requires participants to compare each displayed symbol with the

first one seen in the series. Since the currently displayed number matches with the first one in the
series during the 0-back task, no memory updates are required. However, the task difficulty can
be manipulated by changing N [30, 33, 66]. For N= 2, participants have to memorize the last two
symbols in the series while paying attention to matches when the currently displayed symbol is
the same symbol as shown two items ago. Table 1 shows an example of the N -back.

Displayed number 5 8 3 4 3 9 1
Press button (0-back task) 5 8 3 4 3 9 1
Press button (1-back task) 5 8 3 4 3 9
Press button (2-back task) 5 8 3 4 3
Press button (3-back task) 5 8 3 4

Table 1. Example of the N-back task task. Participants have to confirm by a button press, that the currently
displayed number matches with the number seen N numbers ago.

The motoric requirements remain constant across difficulty levels during the N -back task. This
enables comparisons between different difficulties as working memory load is measured while
excluding reactions from external stimuli.
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A smartphone app4 is used to display a single matching N -back task. Throughout the experiment,
we use a Nexus 5X5 with a screen size of 5.2 inches to run the N -back trials. The displayed symbols
ranged between 0 and 9, which appeared in a random order. Each number is displayed in the center
of the smartphone screen for one second. Afterward, the screen remains blank for 2.5 seconds
before the next number appears. Participants have to press a button on the screen if a match occurs.

5 STUDY: EEG AS INDICATOR FORWORKLOAD
In the following study, we assess the validity of our setup by conducting two N -back tasks with dif-
ferent complexities as described before. Afterwards, we conduct two assembly tasks per participant,
each with the two previously mentioned assembly instruction systems. The overall hypothesis is
that in-situ projections induce less cognitive workload than printed paper instructions. This leads
to the following hypotheses:

H1: Projected in-situ instructions will induce higher alpha power, relative to printed instructions.

H2: Projected in-situ instructions will produce lower scores of subjective workload, relative to
printed instructions.

H3: Projected in-situ instructions will produce fewer item selection errors, relative to printed in-
structions.

H4: Projected in-situ instructions will produce fewer assembly errors, relative to printed instructions.

H5: Projected in-situ instructions will produce faster completion times, relative to printed in-
structions.

(a) (b)

Fig. 3. (a): The Emotiv Epoc wireless EEG headset featuring 16 electrodes including two reference electrodes.
(b): Electrode placement layout of the 14 measurement electrodes [82].

4www.play.google.com/store/apps/details?id=cz.wie.p.nback - last access 2018-05-28
5www.gsmarena.com/lg_nexus_5x-7556.php - last access 2018-05-28
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5.1 Methodology and Measures
We used the Emotiv Epoc as brain-sensing device during the whole experiment (see Figure 3a and
Figure 3b). Since the alpha band varies between participants, we conducted an eyes opened and
eyes closed task to estimate the individual alpha band [4]. The overall duration of this trial was
one minute. The participants started with their eyes opened and were verbally instructed to close
their eyes after 30 seconds to provoke a sudden increase in alpha power [4]. The participants kept
their eyes closed for another 30 seconds. We use this peak as a reference point for extracting alpha
power for later analysis. Furthermore, we took ±2 Hz around the peak frequency as a measure for
the alpha band.
We continue then with the N -back task to verify the validity of our setup and accuracy of our

EEG measures. Participants start with a 0-back task to be induced with low workload, followed by
a 2-back task to be induced with high workload. The 2-back induces sufficient complexity to make
the differences in working memory between resting and N -back task visible in EEG data [8]. A
NASA-TLX questionnaire is filled out after each N -back condition to collect subjectively perceived
workload.

We begin with the assembly task afterward. Inspired by several reference tasks proposed by
previous research [24], we use a Lego Duplo task to evaluate the paper and projected in-situ
instructions in terms of measured workload. We prepared two different assembly instructions,
where each of them is modeled as paper instruction and projection as shown in Figure 2. For the
assembly tasks, we used a repeated measures experimental design with the instruction visualization
as single factor including the levels paper and in-situ. We counterbalanced the order of conditions
according to the balanced Latin square. As identified in previous work [6, 12, 25, 71], we measure
the number of errors and the task completion time per trial. The number of errors was divided
into item selection and assembly errors. An item selection error is counted whenever participants
put their hands into a box where incorrect bricks reside. An assembly error is counted when a
brick is assembled in a wrong position. To reduce the number of head movements, we seated the
participants before the assembly experiment at a comfortable distance to the assembly setup, so
that boxes and the assembly plate can be reached with minimal effort. Participants filled out a
NASA-TLX questionnaire after each trial to provide their subjectively perceived workload during
the last assembly condition. Ultimately, we asked the participants verbally about their preference
between both assembly instruction systems and noted their answers for later analysis.

5.2 Procedure
Participants signed a consent form and provided their demographics after we explained the course
of research to them. We put the BCI on the participant’s head and ensured a good connectivity
between the scalp and all electrodes. We explained to the participants what EEG signals and noisy
artifacts are. We asked participants to keep their head as still as possible and to avoid unnecessary
eye blinks.

Participants started with a one-minute baseline resting task. Participants kept their eyes opened
for 30 seconds. After the first 30 seconds elapsed, participants were instructed to close their eyes
for another 30 seconds. The study continued with two N -back tasks, each comprising 20 numbers.
The total runtime of each N -back was one minute and ten seconds. The experiment started with
the 0-back task. Participants had to press the match button every time they saw a number since
the currently displayed numbers refer to the same number. Participants continued with the 2-back
task. The participants had to press the match button whenever the currently displayed number was
equal to the number shown two numbers back. We recorded EEG data during all tasks. Participants
were asked to fill out a NASA-TLX questionnaire after each N -back task.
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(a) (b)

Fig. 4. (a): IAF power for working memory load, i.e., 0-back, and 2-back. The IAF power is higher for lower
working memory load. The error bars depict the standard error of the sample mean. (b): Participant-wise
comparison of IAF power when using in-situ projections and paper instructions. Except p9 and p11, the use of
in-situ instructions results in higher IAF power compared to paper instructions. The error bars depict the
standard error of the sample mean.

After the verification procedure, participants started with the assembly procedure. They began
with either paper instructions or projected in-situ instructions based on the order of the balanced
Latin square. Additionally, we shuffled the order of the Lego Duplo instructions itself between
the conditions. During the assembly, we recorded raw EEG data, counted the number of errors
separated into item selection or assembly errors, and the time used for assembly. During all
conditions, participants were instructed to keep their head still and avoid unnecessary eye blinks.
After every assembly, participants were asked to fill out a NASA-TLX questionnaire to assess the
perceived the workload during the usage of the given instruction system. Qualitative comments
about the preference of users regarding the instruction systems were collected in the end.

5.3 Data Processing
We apply the following data processing procedure: Data is filtered using a spatio-spectral de-
composition method [64] with filter thresholds between 0.5 Hz and 20 Hz to remove unwanted
frequencies caused by eye blinks or head movements. We average all 14 channels by calculating the
element-wise mean of the signals. We remove the first and last four seconds of the signal to avoid
unwanted artifacts caused by the beginning and end of the trial [51]. We divide the signal into
one-second slices with an overlap of half a second. Instead of extracting the alpha band between 8
Hz and 12 Hz, we determine the maximum peak during the eyes opened and eyes closed task for
each individual [19, 43]. The power spectra around the maximum peak (±2 Hz) is averaged and
used as individual alpha power.

5.4 Results
We recruited twelve participants over our university mailing lists (8 male, 4 female). All participants
were students and had normal or corrected-to-normal vision. None of the participants were affected
by neurological disorders. The mean age was 23 years (SD = 2.22). Participants were compensated
with 10 Euro for their participation.
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5.4.1 Executive Working Memory Load and EEG. We identified alpha desynchronization as
features that corresponded with an increased load in executive working memory. The alpha band
is known to vary across individuals [15]. Therefore, we determined an individual alpha frequency
(IAF) bandwidth for each participant based on their peak frequency value given their baseline EEG.
We defined ±2 Hz around the peak frequency as the individual alpha band. Overall, the mean IAF
band ranged between 6.5 Hz and 10.5 Hz (SD = 2.14).
The mean power of the IAF power for each participant was submitted to a two-tailed paired-

samples t-test for the factor executive working memory load consisting of the 0-back and 2-back
task. A Shapiro-Wilk test confirmed that the data was normally distributed. The results reveal
a significant difference, t(11) = 5.90, p < 0.001, Cohen′s d = 1.70, between the 0-back and 2-
back task. Figure 4a shows the direct comparison of alpha activation between both conditions. To
summarize, our chosen EEG feature was sensitive to load in an executive working memory task,
namely there was less power in the IAF band when there was higher load in this task. Thus, we
report a large effect size in support of H1.

5.4.2 Assembly Performance and Alpha Power. The IAF power of each participant was submitted
to a two-tailed paired-samples t-test for the factor haptic assembly instructions consisting of paper
and in-situ instructions after a Shapiro-Wilk test confirmed that the data was normally distributed.
The results reveal a significant difference, t(11) = 3.86, p = 0.003, Cohen′s d = 1.12. Figure 4b
shows the mean alpha activation per condition and participant. Similar to our findings with the
executive working memory load, we find that IAF power is generally lower for paper instructions
compared to when participants experienced projected in-situ instructions instead—note that this
was not true for p9 and p11 at the individual level. Thus, we report a large effect size in support of
H2. More importantly, we show that the IAF power responds for lower executive working memory
load as it does for our projected in-situ instructions.
Additionally, we statistically compare the number of errors made by the participants during

assembly as well as the time they required to finish the assembly between the different conditions.
We classify errors into item selection errors and assembly errors. Overall, participants did in
average 2.25 (SD = 2.301) item selection errors during the paper instruction condition and 0.083
(SD = 0.289) errors during the in-situ condition. 0.917 (SD = 1.379) assembly errors were performed
when using paper instructions and 0.25 (SD = 0.452). A Shapiro-Wilk test did not show a normal
distribution for the item selection and assembly errors. Thus, we have conducted aWilcoxon signed-
rank test. A significant difference was found for the number of item selection errors, p = 0.009.
However, no significant difference was found for the number of assembly errors, p = 0.188. Figure
5a compares the number of item selection and assembly errors between both instruction systems.
The task completion time averages to 217.08 seconds (SD = 40.31) for paper instructions

and 124 seconds (SD = 13) for projected in-situ instructions. The task completion time shows a
significant effect between both conditions regarding task completion time, t(11) = −8.82, p = 0.001,
Cohen′s d = −2.55.

5.4.3 Qualitative Assessment. We statistically analyze the subjectively perceived workload using
the collected NASA-TLX questionnaires. We average the scores received from the six Likert scales
per condition to calculate the mean raw NASA-TLX scores. The averaged NASA-TLX score amounts
to 13.83 (SD = 7.34) for the 0-back task, 48.92 (SD = 19.01) for the 2-back task, 33.92 (SD = 13) for
the assembly task using paper instructions, and 24.17 (SD = 14.26) during assembly using projected
in-situ projections.

A Shapiro-Wilk test confirmed that the data is normally distributed. A t-test shows a statistical
difference in NASA-TLX scores between the 0-back and 2-back condition, t(11) = −6.41, p = 0.001,
Cohen′s d = −1.85. Therefore, more workload was subjectively perceived in the 2-back task than
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(a) (b)

Fig. 5. (a): Mean item selection and assembly errors. The error bars indicate the standard error. Brackets
indicate significant differences. (b): Mean raw NASA-TLX scores per condition. The error bars depict the
standard error. Brackets indicate significant differences.

in the 0-back task. A significant difference between paper and in-situ instructions, t(11) = −3.86,
p = 0.003, Cohen′s d = −1.12, was found. Therefore, lower alpha activation was measured during
the in-situ conditions compared to the printed paper instruction conditions. Figure 5b shows the
mean NASA-TLX scores.

Additionally, we collected comments from the participants by asking for their preference regard-
ing the assembly in instruction system. Most participants provided us with positive feedback, such
as

"[. . . ] projected instructions were easier and faster to understand than paper instructions.
The light was a good guidance." (p1, p2, p3, p7)
"I felt that I was faster using projections since I did not have to flip the paper. Having both
hands free enhanced the overall assembly." (p5)
"It was easier to follow the light than to follow the paper instructions itself. However, I felt
like a robot during assembly." (p4)

However, some participants stated, that
"[. . . ] the higher assembly speed using projections was stressful. Paper instructions provided
a short relieve in workload when flipping the page." (p9, p11, p12)

or that they were
"[. . . ] unused to it, but [I] could familiarize with it after some time." (p3, p6, p9).

It is interesting to note that p9 and p11 perceived the assembly as stressful due to its fast pace.
Both participants also show less alpha activation during the projected in-situ condition than in the
paper condition (see Figure 4b). Instructions were provided immediately by the in-situ instruction
system, which was perceived as stressful two participants (p9, p11). Paper instructions provided
cognitive alleviation when flipping the page to mentally prepare for the next work step. Previous
research also supports a positive correlation between stress and cognitive workload [65, 74]. The
discomfort of the provided assembly instruction system can also be elicited from our results.
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Fig. 6. Mean alpha power fluctuation of all participants over time. Alpha power increases when using projected
in-situ instructions and decreases for paper instructions. The shadowed area describes the standard deviation
of each data point per participant.

5.5 Assessing Cognitive Workload in Real-Time
Our results show a significant difference in alpha activation between paper and projected in-situ
instructions. Using the collected data, we analyze the real-time applicability of EEG for cognitive
workload assessment. We achieved this by calculating the alpha fluctuation over time for both
conditions.

Similar to the previous analysis steps, we preprocess the data using the spatio-spectral decompo-
sition method [64] with filter thresholds between 0.5 Hz and 20 Hz and calculate the mean of all
channels. We remove the first and last four seconds of the signal to remove unwanted response
artifacts. We calculate the individual alpha band per participant and averaged the alpha power
overall participants for both conditions. Figure 6 shows the alpha fluctuation for both conditions.
For the paper instruction, there is an increase followed by a decrease of alpha activation over

time for the paper instructions. Workload starts to differentiate with time when information from
paper instructions have to be held continuously in the short-term memory. This could be a reason
for the decrease of alpha power with time.

Projected in-situ instructions show a decrease followed by an increase in alpha power. We assume,
that the novelty of the system for the participants is responsible for the decrease in alpha power
at the beginning of the condition. Alpha power increases when the participants become familiar
with the system and less information has to be kept in the short-term memory. A Shapiro-Wilk test
showed a non-normal distribution. A Wilcoxon signed-rank test resulted in a statistical difference
between both conditions, p = 0.001.

6 DISCUSSION
We evaluate the viability of a commercially available EEG device for estimating mental workload
of two different instruction systems to augment a manual assembly task. We discuss the validity of
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our hypotheses and present a framework to evaluate interactive assistive technologies based on
EEG measures.

6.1 Validating EEG Setup prior to the Experiment
To validate the correctness of our EEG setup andmeasures, wemanipulated the difficulty of aN -back
task to vary working memory load and investigated its impact on EEG measurements. Specifically,
we focused on alpha power in an individually determined frequency bandwidth, proximal to 10 Hz.
Previous research has consistently demonstrated lower alpha power in participants who experience
high working memory load compared to low working memory load [31]. Thus, we expected lower
alpha power during the 2-back task compared to a 0-back task. Indeed, we found lower alpha
power for higher task difficulty and higher alpha power for lower task difficulty during the N -back
conditions. In other words, participants experienced less cognitive workload during the 0-back task
compared to the 2-back task. This supports the applicability of using commercial devices to infer
cognitive workload and converges with the results found in previous work [33, 51].

Before evaluating novel interactive assistive systems using EEG, our findings suggest to conduct
an eyes opened and eyes closed task to elicit the individual’s alpha peak. Afterward, a N -back
task with N = 0 and N > 1 should be conducted to infer the validity of EEG measures in terms
of lower alpha activation for higher task complexities. The individual alpha peak is elicited when
participants close their eyes [43] enabling an individual IAF analysis for upcoming EEG trials.

6.2 Evaluating Assembly Instruction Systems
Statistical comparisons of alpha power confirmed that projected in-situ instructions generated
significantly higher alpha power than the use of printed paper instructions. In other words, the
projected in-situ instructions induced less cognitive workload. Thus, H1 is statistically supported.
This finding that is based on EEG measurements agrees with the subjective self-reporting measures
based on NASA-TLX questionnaires [22]. A significant difference in subjectively perceived workload
was found between paper and projected in-situ instructions (H2). In general, our results support
the idea that alpha-band frequency power of EEG measurements is a valid metric for estimating the
levels of cognitive workload induced by a specific instruction system or visualization. Altogether,
this agrees with the motivation of in-situ projections, which is to reduce cognitive load by providing
situated information at the appropriate times.

Regarding assembly performance, we can partially confirm the outcomes of previous research [25].
We found a significant difference in the number of item selection errors. We confirm that fewer
item selection errors were observed using projected in-situ instructions compared to printed
paper instructions (H3). However, no significant difference between both instructions systems was
found on assembly errors. Therefore, we cannot confirm H4. Assembling with projected in-situ
instructions takes significantly less time than printed paper instructions. This agrees with previous
research [25] and supports our final hypothesis (H5).
Our results encourage to measure and evaluate EEG to assess the mental demand of assistive

technologies in manual assembly processes. However, the experiment has taken place under
controlled conditions in lab environments where participants were restricted to a reduced number
of eye blinks and head movements. We recommend the evaluation of EEG to evaluate assistive
technologies in controlled environments before they will be deployed in real-world scenarios or for
further scientific research inferring the mental demand during usage. This way, novelty biases can
be detected by comparing correlations between EEG measures and self-rated assessments. System
architects benefit from these evaluation steps as objectively measured workload can be considered
into the design pipeline.
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EEG Veri�cation
(e.g. N-back task with N = 0
and N = 2)

Individual Features
(e.g. individual alpha band
via eyes opened/closed task)

Experiment Execution
(e.g. measuring EEG with 
di�erent instruction visualiza-
tions)

EEG Analysis
(e.g. analyzing alpha band or 
event-related potentials)

System Comparison
(e.g. comparing individual 
alpha bands by conditions)

Fig. 7. Experimental protocol which enables system designers to evaluate mental demanding elements in
their user interface design on a cognitive level.

6.3 EEG as Real-Time Evaluation Tool
Additionally, we investigated the applicability of EEG as a real-time evaluation tool for detecting
working memory. Previous research used medical EEG systems to derive the current level of
executive working memory in real-time [5, 57, 62]. We show that differences in cognitive workload
are measurable for two different instruction visualization systems using a mobile consumer EEG
headset.
Figure 6 shows, how the level of alpha power changes with time during assembly. The alpha

power for paper instructions decreases with time as the current bin for an item selection has to be
recalled with every assembly step. Furthermore, the final position of the brick has to be recognized
and placed correctly according to the paper instruction.
Projected in-situ instructions show the opposite effect. After a decrease in alpha power, which

could be attributed to a lack of familiarity with the system, an increase in alpha power is observed.
This can be due to an alleviation of working memory load since projected instructions eliminate the
need to maintain a set of manual assembly instructions in working memory. Projected instructions
are updated in accordance with each step of manual assembly and at the appropriate time steps.
Thus, unlike with the use of paper instructions, it is no longer necessary to maintain and recall
instructions from working memory.
The stability in alpha fluctuation for both instruction systems support the use of commercial

EEG devices for real-time workload estimation. This agrees with the subjective perception of
workload through NASA-TLX questionnaires and verbal feedback provided by the participants. A
real-time system for estimating cognitive load could benefit use-case scenarios such as in evaluating
user interfaces, assessment of workload in safety-critical tasks, or real-time adaptation of user
interfaces suited to the current level of cognitive workload. By detecting constant low or high alpha
fluctuations the provided assistance can be adjusted depending on the measured workload levels.
Therefore, we present an experimental protocol which evaluates the cognitive demand assistive
systems require during runtime (see Figure 7). Designers can use this protocol as an assessment
template to find distracting or cognitive demanding user interface elements.
Novel engineered assistive technologies can benefit from real-time insights into the mental

resources by an operator. This enables user interface designers to test visualization adaptations for
different measures of cognitive workload. However, the question of how to provide user interface
adaptation for different levels of cognitive workload still remains and depends highly on the use
case scenario in which assistive technologies are deployed.

6.4 Other EEG Metrics for Evaluating Mental Workload
We relied on an established EEG metric (i.e., alpha power) to confirm previous claims that projected
in-situ instructions can reduce working memory. Frequency domain measures of cognitive load are
well-established and proved to be viable [29, 30]. However, frequency-based measures often lack
the discrimination of functional interpretations, afforded by time-domain measures. Event-related
potentials (ERPs) [69] refer to the time-domain waveform that is contingent upon the occurrence
of a critical event such as the presentation of a stimulus.
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Unlike frequency domain measures, the time-varying EEG activity of subsequent voltage deflec-
tions can be individually attributed to functional mechanisms that underlie information processing.
For example, an early negative deflection in the ERP waveform around 100–200 ms is often associ-
ated with stimulus detection while a later positive deflection between 250–600 ms is associated
with stimulus recognition and working memory updating [67]. Clearly, this allows for stronger
functional discriminability in the type of cognitive work that is experienced by the user, com-
pared to the all-encompassing term ’mental workload’. In fact, signal processing and classification
approaches have been proposed to utilize ERP features for mental workload classification [8, 40].

The use of ERPs for estimating mental workload is limited by the fact that ERPs are event-related.
This means that ERPs can only be extracted if the event that triggers them is known beforehand.
These are typically the items presented in N -back tasks. Unfortunately, not all interfaces that are
of interest will consist of a N -back component. One approach around this could be to introduce
task-irrelevant probes for ERPs, such as an environmentally sound. More recent research has
shown that involuntary ERPs to task-irrelevant stimuli vary in their amplitudes depending on the
cognitive demands of the primary task that they are engaged in [11, 59, 73]. Application cases
include estimating the workload of users playing Tetris across different difficulty levels to estimating
the immersion of users in high-fidelity driving simulators.

7 LIMITATIONS
We are aware of certain limitations of the study. The study was conducted in a controlled laboratory
setting, whereby participants were instructed to blink as little as possible and to avoid unnecessary
head movements in order to minimize artifacts in the EEG signal. Users are unlikely to abide
by such instructions in mobile real-world settings. Nonetheless, we point out that the manual
assembly task is one that involves substantial activity. Therefore, our EEG recordings were likely
to have contained a significant degree of motoric noise and continued to be robust for our current
estimation of cognitive load. Cortical activity related to the planning of motor actions can also
result in lower frequency power in a bandwidth that overlaps with alpha (i.e., mu-power: 8 Hz to
12 Hz [68]). Therefore, the current results could have been affected by motor planning during item
selection and placement within the assembly task, rather than cognitive load per se. Nonetheless,
we assume that our results are valid for cognitive load and not motoric activity, given that we
validated our EEG measure with a corresponding N -back task. Furthermore, we extracted the
individual alpha band, which is not necessarily located in the mu frequency range.

8 CONCLUSION AND FUTUREWORK
In this work, we investigated whether a projected in-situ system for presenting instructions during
a manual assembly task could serve its intended purpose in reducing cognitive load. We employed a
commercial EEG headset to derive direct measurements of neural activity that varied in accordance
with working memory load in a N -back task, namely alpha power [43]. This same measurement
(i.e., alpha power) was larger for projected in-situ instructions than the traditional approach of
paper instructions, demonstrating that cognitive load was lower when a projected in-situ system
was employed. To the best of our knowledge, this is the first study that provides direct evidence for
assistive technologies, and specifically in its role to alleviate working memory demands. To date,
only subjective questionnaire estimates have been collected. The current work demonstrates the
viability of using a commercial EEG device for evaluation purposes, even in a setting that involves
a large amount of user activity (i.e., manual assembly).

In future work, we intend to investigate if functional distinctions of cognitive workload can be
achieved with a commercially available EEG device. In addition, we seek to address the question of
what constitutes an optimal level of cognitive workload. It has been argued that low workload could
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result in boredom and passive fatigue, which is just as undesirable as high workload [84]. Based on
this, we plan to create a workload-aware environment where projected in-situ instructions can
be presented just-in-time for cognitive alleviation by responding to the current actions, changing
task demands, and the workload level experienced by the brain. Assessing cognitive workload in
real-time using EEG will support the establishment of a physiological-based benchmark for assistive
instruction systems and user interfaces. Such a benchmark will strongly contribute towards the
principled and systematic evaluation of general novel engineered user interfaces, besides those
employed in industrial assembly settings. To foster and encourage research in this area, we publish
the dataset and used assembly instructions on our institutes’ website6.
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