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ABSTRACT
Physical exercises can benefit our health, but avoiding improper

form and overexertion is essential. Facilitating bodily insights can

encourage learning about exercise form, allowing users to gain

a deeper understanding of their physiology. To investigate this,

we conducted a lab experiment where amateur users performed

bicep curls, and interviews with sports coaches. Participants were

provided with FitBack—a system that monitors muscle activity

during exercises via electromyography (EMG) and offers real-time

biofeedback. Amateurs reported that they were successful in im-

proving their exercise form and could acquire deeper bodily insights.

Coaches reflected on how understanding muscle activity through

EMG could be effectively used for increasing body awareness dur-

ing coaching, highlighting that EMG-based biofeedback is beneficial

for a diverse set of users. Our work contributes insights into using

bodily sensing to help users understand their bodies. We contribute

guidelines for designing systems that use EMG biofeedback effec-

tively in physical activity.
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1 INTRODUCTION
Physical activity is an increasingly important part of our lives. The

number of people exercising regularly is on the rise [19, 21], as is

the number of interactive systems that accompany exercise every

day. However, while regular physical exercise offers mental and

physical health benefits, these come at the price of the hard work

needed to master the forms and techniques required for a given

sport. The difficulties in reaching the required body awareness to

achieve the desired proficiency may lead to dissatisfaction and even

abandonment, reducing or losing the accrued health benefits [62]

altogether. While coaching experts are widely available, physically

active users cannot be constantly accompanied while exercising.

Past research in Human-Computer Interaction (HCI), e.g. [42, 70]

showed that interactive technologies can effectively build body

awareness for certain exercise scenarios. Yet, it remains a challenge

to develop methods that would enable generic, exercise-agnostic

methods of better understanding one’s body when exercising. Thus,

there is a need for developing ways in which users can monitor

their bodies to better understand their sports practice.

While professional sportspeople use a wide array of sensors to

improve their performance, e.g. [6], these technologies are too com-

plex for everyday users. In this paper, we explore the means for

users to become more aware of their muscle activity through elec-

tromyography (EMG). EMG offers additional insight into muscle

physiology to facilitate motor memory consolidation. Users desire

a better insight into their bodies [15]. Yet, it remains a challenge to

understand how complex physiological data streams, such as EMG,

can be effectively used to foster insight.

EMG in current commercial products offers highly customized

feedback about muscle strain, exertion, and training effect, optimiz-

ing for individual exercises and performance metrics. In contrast,

our work investigates if and how visualized EMG data can provide

insight into one’s own body physiology and how to provide an

encouraging—yet challenging—way for users to access knowledge

about their muscles. We believe that current tools undervalue the

potential of EMG as a visualization of exercise form. As muscle

activity differs significantly among users, no algorithm can offer

https://doi.org/10.1145/3447526.3472027
https://doi.org/10.1145/3447526.3472027
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Figure 1: A user monitoring their biceps curl exercise via
electromyography. Respective feedback is shown on the
monitor screen (biceps on the left, deltoid on the right). Elec-
trode pairs (red/yellow) are attached on the biceps and del-
toid. Reference electrodes are marked in dark blue.

an effective automated interpretation of the signals, which con-

siders the individual context of the exercise. Our work explores

how interactive technology can facilitate this user-driven process

of interpretation as an opportunity for monitoring physical activity,

empowering users to understand their bodies better.

Consequently, this paper investigates user attitudes and perfor-

mance when interacting with muscle activity data. We first con-

firmed the technical feasibility of our low-cost, mobile prototype

FitBack (see Figure 1) to record and visualize EMG data and ex-

amined first impressions and performance of amateur users when

supported via EMG-based biofeedbackwhile performing bicep curls.

Users reported that having access to their muscle activity through

visualizations supported them in gaining an understanding of their

own body movements. Amateur users mostly preferred abstract

feedback that did not include rich EMG data during the exercise.

Additionally, feedback preferences were primarily related to the ex-

ercise’s context, such as supervising daily workouts vs. perfecting

exercise form. Interestingly, for the latter, users reported that they

preferred detailed feedback.

To further investigate how to design for rich physiological feed-

back in the context of coaching and supervision during physical

activity, we conducted a set of interviews with experienced profes-

sional sportspeople and coaches, during which they experimented

with the detailed view of FitBack and considered its possible use in

their practice. The professionals remarked that the detailed EMG

data was easy to interpret for a variety of exercises and that it of-

fered a way towards a more informed exercise form and increased

body awareness. They recognized its potential to support coaches

in confirming correct execution and providing tangible evidence to

present to students.

This paper contributes to the HCI for sports area by reporting

on two studies of how users interpret rich bodily signals: (1) a

lab study with amateur users and (2) interviews with professional

sportspeople. Our results indicate that amateur and professional

users can gain deeper insights into their own physiology through

interpreting EMG signals. The users could immediately grasp the

properties of the EMG signal, and they appreciated its information

value. Based on our findings, we conclude with a set of design

recommendations about building engaging and informative EMG-

based biofeedback systems for physical activity, which facilitate

interpretation.

2 RELATEDWORK
HCI has investigated modalities and exercise forms suitable for

tailored feedback. In this section, we introduce relevant research

projects in the context of physical activity and feedback. We addi-

tionally take a closer look at biofeedback modalities and EMG as

input for HCI applications.

2.1 Biofeedback
Biofeedback is a type of physiological-driven feedback, where phys-

iological responses of a user are voluntarily measured and com-

municated with the user at the same time to create a feedback

loop [10, 23]. Biofeedback has recently been extensively used in

rehabilitation and treatment of disorders such as stroke rehabilita-

tion [13], anxiety [53], or substance abuse [64]. A typical biofeed-

back session exposes the user to a visualization of a physiological

signal that is correlated to a disorder. Users are instructed to proac-

tively act towards a desired signal, where the physiological signal

is usually visualized in a simplified form. In contrast to raw sig-

nals such as brain activity [17, 43] or heart rate variability [74],

simpler visualizations are easier to understand by laymen. Results

from previous work showed that biofeedback has a strong influence

over physiological functions and offers users several advantages

over traditional treatments, including a visible metric for reflection,

progress, and ongoing involvement of the treatment process [58].

For example, biofeedback has been successfully employed for stroke

rehabilitation [13], posture corrections [57], treatment of neurologi-

cal impairments [65], and substance abuse [51]. Apart from medical

treatments, biofeedback has shown potential to improve training

efficiency, as highlighted in the following section.

2.2 Fitness and Feedback
The HCI field has recognized possibilities for interactive artifacts

to build increased body awareness and thus contribute to a bet-

ter experience and skill development in sports. Being more aware

of the relative position of one’s body has been shown to benefit

those practicing yoga [68] or swimming [42]. However, gym exer-

cises, perhaps due to their static nature, received more extensive

attention. A number of projects proposed using different sensing

modalities for recognizing exercise execution such as inertial mea-

surements [47, 54, 71], pressure sensors [18, 66] or cameras [9, 41].

Also, the now discontinued Myo
1
armband could effectively differ-

entiate between various gym exercises [45]. While these systems

offered effective ways to count execution or assess the correctness

of the motion, they did not enable the user to determine if the

correct muscles were used in their exercise. Our work examines

the possibilities of direct muscle monitoring and investigates the

opportunities of the user possessing that knowledge.

1
https://support.getmyo.com/hc/en-us
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Another strain of HCI work recognized the benefits of help-

ing users understand their own bodies through additional feed-

back. Turmo Vidal et al. [70] built wearable lights that could be

customized to enhance the perception of relative body position,

improve exercise technique and facilitate instruction [69]. They

showed that additional insight during activities can lead to skill

development. Earlier, Hämäläinen [34] suggested using the mirror

metaphor, which is particularly suited to gym exercises as fitness

clubs usually feature mirrors. Anderson et al. [4] developed an Aug-

mented Reality (AR) mirror system which tutored users in gym

exercises. Past work shows many opportunities for possible inter-

ventions at the gym and a need for users to understand their bodies

better in order to train better. However, it remains an open ques-

tion what sensing and feedback offers the most benefits to users

and how it can be adopted into exercise environments. Our work

is different from past research as it specifically investigates what

happens when users are aware of their muscle activity and how

they can benefit from this knowledge.

2.3 EMGxHCI
Contracting specific muscle groups of our body allows us to posi-

tion ourselves and direct our extremities. This muscle contraction

happens along the muscle fibers and generates an electric field. Us-

ing surface electromyography (sEMG), this field can be measured

and quantized. As a result, electromyography provides excellent

access to a person’s muscle exertion. Already in the early 20th

century, researchers investigated the interplay between neural ac-

tivity and muscle contraction [1]. While EMG has its main area

of application in clinical settings for diagnostics and prosthetic

control [5, 30], the last two decades have shown the feasibility of in-

teractive systems leveraging EMG-based interaction in the domain

on human-computer interaction (HCI). Important research includes

work by Costanza et al. [12] highlighting properties of isometric

muscle activation for intimate interaction as well as a seminal work

by Saponas et al. [59] showcasing the potential of EMG for muscle-

computer interfaces, detecting gestures using a circular array of

electrodes around the forearm. In more recent work, Karolus et al.

confirmed these findings in particular for fine gestures in a guitar

tutoring [39] and piano playing scenario [37]. An inherent chal-

lenge of EMG-based interfaces is engineering user-independent

classification algorithms. Works by Kerber et al. [40] and Huang et

al. [33] showcase possible solutions to this issue. While the first one

relies on a robust classification approach, the latter work leverages

implicit calibration to collect data samples without interrupting

the user. Similarly, advances for electromyographic sensing with

low-cost, mobile devices are essential, such as follow-up work from

Saponas et al. [60] and most recently printable electrodes for rapid

fabrication of on-skin interfaces [55].

In the form of biofeedback, EMG has proven to be effective for

behavioral change and rehabilitation [2, 31, 52] as well as strength

acquisition [14, 22]. Work by Toader et al. [67] showed that users

adapted their exercise form after receiving visual EMG-based biofeed-

back compared to a control group with no feedback. With FitBack,

we extend their work and investigate the influence of different feed-

back modalities on performance and the users’ perceived awareness

of their body posture and movements.

On the consumer market, readily available products which use

EMG-based biofeedback for physical activity, such as Athos
2
, Myon-

tec
3
, and Mpower

4
are primarily aimed at sports professionals and

competitive athletes. Athos relies on post-hoc reports and Myontec

reports on exertion over the course of the whole training session. In

FitBack, we rely on displaying live muscle activity allowing users to

grasp timings of exercise forms, similar to the activation curves pro-

vided in Mpower. All commercial systems rely on pre-configured

smart clothing and tailored algorithms, limiting the set of exercises

that can be monitored. Lastly, these devices provide very specific

feedback, designed for professional athletes and post-exercise anal-

ysis with professional coaches. While the technology is available,

albeit, for a high price, it remains to be investigated how everyday

users can benefit from detailed biofeedback. As one solution to

allow for more scalable solutions for exercise monitoring, our work

envisions user-driven interpretation of collected data with the aim

to provide deeper bodily insight. Consequently, this work examines

if and how EMG-based biofeedback can foster reflection on exercise

form to further the users’ understanding of their body physiology.

3 METHOD
Our investigation is informed by previous research, including tech-

nical and design requirements. Commercial systems and research

probes established that EMG is an effective method to support fit-

ness exercises. However, there still a need to understand the design

principles for interactive technologies which empower users to

understand muscle activity. In this work, we evaluate if the access

to detailed muscle activity can facilitate an improved understanding

of one’s own body physiology. With increased insight into how

their body reacts to exercise, users will experience more health

benefits [50] and develop expertise [46].

To explore this, we replicated existing feedback methods as a

baseline, but opted for a low-cost mobile prototype, which makes

EMG-supported sports exercises accessible for amateurs. Accord-

ingly, we chose an exploratory approach by first building a mobile

prototype capable of recording electromyograms via adhesive elec-

trodes. We used this system to explore requirements and resulting

technical constraints, asking how feedback should be conveyed,

what is the optimal temporality, and what audience can benefit from

such a system. For the latter, we identified two main audiences,

namely novice to experienced independent users who engage with

the feedback directly, and fitness coaches who aim to gain deeper

insights into their student’s exercise form.

Thus, we employed a mixed-method inquiry consisting of a user

study with 18 novice to experienced participants (Study I) and inter-

views with sports professionals and coaches (Study II). This allowed

us to capture opportunities, requirements, and constraints for using

interactive muscle sensing and biofeedback during physical activity.

We structured this investigation into two main research questions:

2
https://www.liveathos.com/

3
https://www.myontec.com/

4
http://www.mpower-bestrong.com/index.html
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RQ1: Is supporting users via EMG-based
biofeedback during physical activity technically
feasible with a low-cost EMG device?
This research question investigates technical constraints that arise

from mobile electromyograms. Existing research [39, 60] and com-

mercial products (Section 2.3) have already demonstrated the feasi-

bility of EMG for recognizing body movements, highlighting the

importance of mobility for such systems and focusing on data-

intensive post hoc analysis. Consequently, we provide a technical

evaluation of a mobile, low-cost EMG device (FitBack) with regard

to (1) recognizing the correct form of fitness exercises and (2) the

feasibility to accurately and effectively visualize muscle activity of

users in our experimental investigation (Study I). We used the bicep

curl as an example exercise, suitable for beginners and experienced

sportspeople. Besides the technical evaluation, we evaluate user

experience, perceived workload, and flow experience during the

exercises when interacting with FitBack.

RQ2: How can we design EMG-based
biofeedback to facilitate bodily insights during
physical activity?
Here, we look at different feedback modalities (visual and auditory)

and granularities for a broader audience (amateurs and coaches).

The system should provide easy access to bodily insights both for

novices and more experienced practitioners while providing neces-

sary details for experts and coaches to find the perfect form. We

compare existing designs with detailed EMG feedback through

rankings and evaluate opportunities (Study I). We additionally con-

ducted semi-structured interviews to gain further insights into how

participants in this first study perceived their body awareness. Fur-

ther, we conducted interviews with sports coaches (Study II) to

finalize a design suitable for a variety of exercises. The interviews

also enabled us to explore how EMG feedback can be leveraged in

a coaching scenario. We focus our analysis on the collected qualita-

tive data and derived themes from the interviews for this research

question.

4 STUDY I: EXPERIMENTAL INVESTIGATION
OF EMG-BASED BIOFEEDBACK

In this first evaluation, we focus on one particular fitness exercise

and test different feedback types and granularities using FitBack.

Hence, we first confirm that EMG-based biofeedback is technically

feasible using a low-cost recording device, before finalizing de-

sign requirements for physical activities in Study II. This section

first introduces our implementation of FitBackand reports on the

employed study design, used measures, procedure and participants.

4.1 Apparatus
FitBack is an integrated system that records and processes EMG

data. The system is closely adapted from EMBody [38], a toolkit for

EMG-based interface prototyping. In fact, the hardware is identi-

cal, only the software components were adapted as outlined below.

FitBack was developed with requirements for physical exercises in

mind, such as mobility, allowing users to freely move around. Dif-

ferent feedback modalities and granularities allow FitBack to cater

to a broad audience of users, while a simple but robust detection

algorithm is used to recognize exercise repetitions. The following

section provides an overview of the implementation of FitBack.

4.1.1 Hardware. FitBack’s hardware is based on an ESP32 micro-

controller
6
, which is a low-cost and low-power system on a chip

with integrated WiFi. We measure EMG using a bipolar measure-

ment technique [52] including a reference electrode and two sens-

ing electrodes to minimize noise artifacts. Amplification is realized

through an existing design
7
that we adapted for our purposes. The

amplified signal for each channel gets processed by the ESP’s Ana-

log Digital Converter (ADC) yielding a 12 bit resolution. Measure-

ments are broadcasted over the network via UDP at a sampling

rate of 200Hz, which is sufficient for the following filtering steps

(see Section 4.1.2). The whole hardware system can be powered by

powerbank and fits in a 3D-printed case allowing it to be carried

around by the user. Please refer to EMBody’s [38] github
5
for a

complete overview and all resources.

4.1.2 Software. To process incoming EMG data, FitBack includes

an accompanying software application that receives the data sam-

ples and extracts important EMG indices (see Section 4.2) to gener-

ate biofeedback. First, a bandpass filter between 2Hz and 100Hz is
applied [59], reducing long-term drifts and high-frequency noise. A

follow-up bandstop filter between 49Hz and 51Hz removes inter-

ference from power line noise. Secondly, FitBack calculates epoched

root mean square (RMS) features with a window size of 40 samples
8
.

RMS values can be seen as a proxy for the amplitude of the EMG

signal, hence increasing when muscular activity increases [52]. To

counteract fluctuations that might be confusing to users, a Savitzky-

Golay filter [61] was used. After these processing steps, the signal

is visualized (see Section 4.2).

To detect individual exercises, FitBack further cross-correlates

the RMS signal with a target signal which is acquired for each

participant during the calibration phase before the experiment. A

large correlation coefficient indicates an alignment between the

target signal and the incoming signal during the experiment. The

correlation value is used to determine whether individual trials

were correctly performed by aggregating the values for all muscle

groups that were measured (see Section 4.3).

4.2 Design
We chose the bicep curl as a reference fitness exercise. This simple

exercise is suitable for beginners as well as popular among experi-

enced practitioners [8]. Additionally, it involves only a few selected

muscle groups (biceps and deltoid) allowing for easy electrode

placement [16]. Despite its simplicity, the bicep curl still leaves a

certain margin for error, such as performing curls too fast or using

the deltoid to aid in lifting the weight. This significantly reduces

the training effect and can lead to injuries [8, 16]. Figure 2 shows

two examples from filtered EMG signals including the bicep as well

as the deltoid. The left side illustrates a correct execution involving

6
https://www.espressif.com/en/products/socs/esp32

7
www.github.com/BigCorvus/2-Channel-Biopotential-Amp

5
https://github.com/HCUM/embody

8
Corresponds to 200ms ; a hop size of 0.5 times the window size was used. Parameters

are based on preliminary tests.

https://www.espressif.com/en/products/socs/esp32
www.github.com/BigCorvus/2-Channel-Biopotential-Amp
https://github.com/HCUM/embody
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exclusively bicep activation, while the right side shows a bad ex-

ample using the deltoid during the repetition. Focusing on a simple

exercise with a clear sequence allowed us to evaluate the suitability

of EMG-based biofeedback with a special focus on different needs

from a diverse audience (novices vs experienced sportspeople).

Design decisions for feedback modality and granularity are in-

formed by past work on EMG-based biofeedback [52] and self-

reflection [49] (cf. six kind of questions). Visual feedback enables

detailed and concise feedback and allows users to observe different

muscles [48] or different muscle regions [31]. Varying temporal

granularity additionally enables users to capture the timing of their

muscle activation [2]. However, visual feedback can be problem-

atic where users are required to visually observe and control their

actions. Hence, we introduce auditory feedback as another modal-

ity. For both modalities, we implement the most commonly used

indices [52]: EMG amplitude and timing of muscle activation as

detailed in the following sections. We employed a mixed design

that used the visualizations as within-subject and the sound cues as

between-subject factor. All participants were instructed to exercise

with each visualization while the presence of the sound cues was

varied per participant. We note, that the employed modalities and

indices are predominantly used in the introduced commercial prod-

ucts as well. While there are other viable feedback modalities (e.g.

vibrotactile), the investigation of this work is primarily focused on

visual feedback, due to the high bandwidth constraints of conveying

rich EMG data.

4.2.1 Visual Feedback. FitBack implements three different feed-

back visualizations that change according to the measured muscle

activity: Bars, Circles, and Lines as illustrated in Figure 3. Bars and
Circles present an abstracted EMG signal to the user based on

the EMG amplitude. In contrast, the Lines visualization shows a

smoothed version (see Section 4.1.2) of the raw EMG signal to the

user over time Here, we hypothesize that abstract visualizations can

increase the understanding of laymen of the complex signal [11].

Direct representations of the signal, such as the Lines representa-
tion, provide deeper insights into the training efficiency, offering a

finer granularity for amplitude and timing. While this visualization

is potentially more difficult to understand for novices, it offers most

details and the biggest potential for user-driven interpretation.

All visual representations provide a target zone that needs to

be reached during the execution of an exercise, such as high bicep

activation marked by an orange area at the far end of the respective

visualization. An avoid zone is implemented for the deltoid in analog

fashion.

4.2.2 Auditory Feedback. In addition to visual feedback, FitBack

utilizes auditory feedback to communicate correctly executed rep-

etitions of an exercise. Apart from their use in biofeedback [52],

auditory cues have been verified as a suitable modality for success-

ful actions [24], warnings [25], or errors [44] in various research

projects. FitBack plays a positive auditory cue when a repetition

has been executed correctly, while faulty exercise form is reported

by a negative cue. In our case, the respective sound is played when

the measured signal reaches the target or avoid zone.

4.3 Measures
For our data collection, we focused on the following aspects in

relation to our research questions: (1) participant performance of

the executed bicep curls, (2) usability and perceived workload when

exercising with FitBack and (3) impact of feedback type on exercise

form.

4.3.1 Participant Performance. For our analysis, we collected a to-

tal of three performance metrics detailing how accurate participants

executed the biceps curls. These include a binary coach rating, the

binary rating from FitBack, and a post hoc rating (7-item Likert),

as detailed below.

Coach rating. During the experiment, we collected performance

assessments by the experiment instructor (a sports professional),

who judged (silently) each execution as correct or incorrect. Con-

trary to the calibration phase (cf. Section 4.5), the instructor relied

solely on the visual inspection of each execution and had no access

to the EMG signal. This constellation mimics a standard practice

session where the coach can only observe the disciple.

FitBack rating. Additionally, we logged FitBacks’ assessments

of the trial. Here, preliminary tests have shown that a correlation

value of greater than 0.5 for both the bicep and the deltoid signal in-

dicated correct execution of the exercise. Details on the correlation

algorithm are provided in Section 4.1.2.

Post hoc rating. Lastly, we conducted post hoc reviews of the

collected EMG data. The three reviewers are researchers who use

EMG-based systems daily and are familiar with the fitness exer-

cise. They were presented with the EMG signals (cf. Figure 2) of

each execution after the experiment and rated them on a 7-item

Likert scale. A set of example executions (covering correct and

incorrect trials during the study) served as orientation. Correct

execution was rated highest, while points were deducted for bad

form, such as lifting with momentum or using excessive deltoid

activation
9
. We additionally confirmed the inter-rater agreement

of the three reviewers using the rWG(J ) agreement index [35]. A

value of rWG(J ) > .99 confirmed high agreement. We subsequently

transformed the averaged post hoc ratings into a binary scale by

categorizing all executions rated 4 and higher as correct. Executions

with this rating only exhibited minor flaws and could be considered

correct. This allowed us to compare all three assessments in our

results (cf. Section 4.6).

4.3.2 Questionnaires. We measured the Usability Metric for User

Experience (UMUX) [20] to identify FitBack’s user experience and

detect potential flaws when exercising with it. To assess perceived

workload during the exercise, we employed the NASA Task Load

Index (NASA-TLX) [27] in its raw form without the weighting

process [26].We further used the flow experience questionnaire [63]

to measure the participants’ engagement in the training exercises.

Finally, we asked custom questions
10

which addressed feedback

ranking its perception and influence during the exercise.

9
The rating form and examples are provided as supplementary material.

10
Measured on a visual analog scale (VAS): 0 to 100.
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Figure 2: Example EMG data for a correct (left) and incorrect (right) bicep curl. The incorrect example clearly shows excessive
deltoid use (orange) compared to bicep use (blue). Time (in samples) on the x-axis; muscle activation (as RMS values) on the
y-axis.

Biceps Deltoid

Optimum Avoid

Biceps Deltoid

Optimum Avoid

Biceps Deltoid

Optimum Avoid

Figure 3: FitBack visualizations showing the same EMG data. Abstract representations Bars (left) and Circles (middle), and the
detailed representation Lines (right).

4.3.3 Interviews. We conducted semi-structured post-hoc inter-

views with all participants. Interviews took approximately 10 min-

utes each. Wemade sure to cover relevant topics including technical

elements such as influence of electrodes and perceived latency of

the shown feedback. Additionally, we inquired about their per-

ceived confidence in the feedback and had them enumerate some

of the advantages and disadvantages of different feedback types

from their view, including auditory feedback if applicable. Lastly,

we investigated possible application scenarios with FitBack.

4.4 Participants
For our first study, 18 participants (four female, 14 male) with a

mean age ofM = 25.6y (SD = 3.24y) were recruited from univer-

sity mailing lists. The average self-reported general fitness experi-

ence was 59.3 (SD = 22.77) and 42.3 (SD = 29.81) for experience

in weight training
10
. Participants trained 3.2h per week on av-

erage (SD = 1.54h). Each participant was compensated with an

equivalent of USD 12 in the local currency.

4.5 Procedure
The experimenter welcomed each participant and explained the

intention of the study. After providing informed consent, partici-

pants stated their fitness background and demographic data. Next,

they received an introduction on how to perform a correct bicep

curl and were made aware of common mistakes. Electrodes were

placed on the participant’s dominant arm on the bicep and deltoid

muscles (see Figure 4). The experimenter then picked weights that

were appropriate to the participant’s fitness level. Afterward, the

calibration started in which a visualization dictated the rhythm for

the bicep curl repetitions. The experimenter verified the correct-

ness of the bicep curls during the calibration phase, both visually

and via the EMG data. After successfully calibrating a target signal

(cf. Section 4.1.2) for the participant, the experiment started. Partic-

ipants were given some time to familiarize themselves with each

visual condition before starting ten bicep curl repetitions for each

condition, yielding a total of 30 repetitions per participant. Note

that sound cues were used as a between-subject variable, hence

each participant either saw all three visualizations with sound cues

or completely without sound cues. Participants filled out the ques-

tionnaires for each condition during short breaks. The experiment

was concluded by removing the electrodes and conducting the short

interview. In total the experiment lasted approximately one hour.

4.6 Results
We report on the statistical analysis of measured usability measures

as well as feedback ranking and perception. For each measure, we

conducted two-way (visualization and sound) mixed ANOVAs. If the

data deviated from normality, we first aligned rank transformed [72]
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Figure 4: Electrode placement on biceps (left) and deltoid (middle) muscles. Reference electrodes can be seen close to the
scapula. On the right side: participant during the study.

it. Scripts and raw data are provided in the supplementary materials

for additional details. Further, we present an analysis of FitBack’s

accuracy in detecting correct exercise form and include a qualitative

analysis based on the interviews.

4.6.1 Judging Exercise Form. To evaluate the validity of the pre-

sented performance ratings (cf. Section 4.3), we compare the ratings

against each other. Here, the coach rating provides a gold standard

for feedback in a standard training session, while the post hoc rat-

ing allowed us to acquire a more accurate look at involved muscle

activity. The rating of FitBack demonstrates the feasibility of a sim-

ple detection mechanism for this type of exercise. We provide an

overview of all comparisons in Figure 5.

On the left side (Figure 5), the confusion matrix between the

coach rating and the FitBack rating shows a good degree of con-

sensus. In 76% of executed trials, the coach and FitBack issue the

same rating. It is noteworthy that the class distribution (as rated

by the coach) is unbalanced
11
: the good (correct execution) class

contains 519 samples, while the bad (incorrect execution) class only

contains 21. In approximately a quarter of cases for each respective

class
12
, the rating by the coach and FitBack’s assessment differ.

While the coach only relied on a visual inspection of the exercise,

FitBack had access to the EMG signal but uses a simple algorithm

to predict correctness. Here, we introduce our post hoc rating. It

allowed us to further utilize the EMG signal through manual inspec-

tion of the exercises, providing a much more fine-grained analysis

than FitBack. Consequently, we considered these ratings to be most

conclusive when rating the exercise form of the participants.

The confusion matrix in the middle and on the right (Figure 5)

shows the respective comparison of the coach rating and the FitBack

rating with the post hoc ratings. The class distribution is slightly

less unbalanced: 469 for good and 71 for bad. The comparison with

the coach rating shows near-perfect unison for correct executions

(good class), yet the coach fails to recognize up to 87% of bad

11
An artifact of the experiment, as participants were generally good at performing the

exercise.

12
124 for good, 5 for bad.

executions. This highlights that having access to the actual EMG

data improves the judgment of exercise form, as involved muscle

activity can be observed accurately, and false activation (e.g., deltoid

usage) cannot be masked by the participant. This also explains the

high degree of consensus for good executions, as correct muscle

activation inevitably results in the correct visual manifestation of

the exercise.

The comparison with FitBack on the far right side (Figure 5) illus-

trates that the system is generally stricter than our post hoc rating,

only recognizing 77% of correct executions. However, the system

correctly predicts nearly half of the bad executions, outperform-

ing the coach in this regard. We attribute the mixed predictions of

FitBack to its simple algorithm. While more elaborated algorithms

may yield better performance, we note that recognizing correctness

is not the main purpose of FitBack but rather visualizing their own

EMG signal to users. This added information has already shown

insightful for versed practitioners (cf. post hoc rating). In the fol-

lowing, we evaluate if this is also the case for laymen users of

EMG.

4.6.2 User Performance. We further tested the performance of the

participant with regard to correct exercise form as judged by the

post hoc rating, given visualization and sound in Figure 6. We found

a significant effect of visualization (F (2, 518) = 3.93,p < .05) and a

two-way interaction effect of visualization and sound (F (2, 518) =
3.80,p < .05). Post-hoc pairwise comparison using tukey-adjusted

p-values showed a significant difference between the visualization

Bars and Lines as well as between Bars and Circles. We found one

significant two-way interaction effect between Lines and Circles for
the factor sound (No - Yes).

4.6.3 Questionnaires. We did not observe any significant differ-

ences for either the NASA-TLX, the UMUX nor the flow experience

questionnaire. Descriptive statistics for each condition are listed in

the supplementary material. Our analysis of the custom questions

polling feedback ranking and perception did not show any signifi-

cant differences. A graphical representation and the complete data

is provided in the supplementary material.
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Figure 5: Confusion matrices (associated truth labels on the y axis) between coach—system (left), post hoc—coach (middle),
post hoc—system (right). Note that percentages are based on within-class instances (per row), as class distribution is highly
skewed.
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Figure 6: Post hoc ratings given the shown visualization and
sound feedback. Significant differences are marked with *.

4.6.4 Interviews. All interviews (1:39 hrs of recording) were tran-
scribed verbatim. We opted to conduct a focused analysis based

on the pragmatic approach by Blandford et al. [7]. To do so, three

researchers open coded a representative 17% of the material. In a

discussion, the researchers agreed on an initial coding tree. The rest

of the material was evenly split between the three coders and coded

separately. A concluding discussion refined the coding tree and

surfaced a code hierarchy with four themes: Feedback Type and

Granularity, Cognitive Effort, Gaining Insights and User

Acceptance. The following section presents the content of each

theme and associated quotes.

Feedback Type and Granularity. Participants commented exten-

sively on advantages and disadvantages of the different feedback

types and granularities. All visualizations were understandable for

the participants, but there were clear favorites in terms of when

and how to use them. For example, the abstract visualizations (Bars,
Circles) were perceived as straightforward and easy to interpret:

It was evident what needed to be done. When the [del-
toid] was red, one had to correct one’s shoulder move-
ment. (P3)

The detailed Lines feedback allowed for a more detailed analysis

of the executed exercise. Additionally, participants remarked that

Lines provided them with a more profound temporal component, as

it displayed a history of values that was not present for the abstract

visualizations.

When asked about the sound feedback, some participants com-

mented that they felt it was more discreet than the visualizations

allowing them to focus on the exercise, while others preferred the

visual feedback. Interestingly, the additional sound feedback pro-

vided some participants with a feeling of accomplishment whenever

they perceived positive sound feedback:

It was a short feeling of accomplishment. That moti-
vated me. (...) that could be integrated well into one’s
training. (P17)

Cognitive Effort. Participants reported that the level of cognitive

effort they needed to invest into understanding and interpreting

the feedback varied. Abstract visualizations (Bars, Circles) are less
cognitively demanding, while the detailed Lines feedback was more

demanding and required additional concentration, occasionally

interfering with exercise execution:

To just do one exercise; the lower fidelity is more pleasant
and less cognitively demanding. (P13)

Gaining Insights. Participants commented on how FitBack helped

them to understand their muscle activity during the exercise and

supported them in finding mistakes and incorrect form. It helped

them to establish an understanding of their own exertion:

If you are not that familiar with muscles, then the sys-
tem shows this quite well and you get better awareness
for specific muscles, especially those that one has not
used. (P15)

By doing so, FitBack facilitated their learning process, making them

aware of their movements and supporting correct exercise execu-

tion. Participants remarked that it was straightforward to map their

movements to feedback provided by FitBack.

User Acceptance. Participants relied on the feedback from the

system when correcting their exercise form. They appreciated that

mistakes were transparent for them and could be rectified immedi-

ately:

If I know that I do something wrong and that this is
visualized, I can clearly imagine how to get rid of it.
(P9)

On a more technical side, we also investigated whether the elec-

trode setup and the induced latency for the abstract feedback posed

any issue for participants. Most participants reported that neither
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influenced their exercise rhythm. It was noted however, that the

required setup needed to be kept minimal for FitBack to be feasible

in a daily workout.

Another idea mentioned by the interviewees was the integration

of electrodes into wearables such as sport shirts and trousers. This

would minimize setup time and would make FitBack much more

accessible for short daily workouts, also reducing social stigma as

remarked by a few participants:

If there could be a wearable that includes the device and
cables, e.g. a shirt with electrodes inside, that you can
just wear, that would be different. Then you would just
need to wear the shirt. (P6)

4.7 Summary
While the results from our quantitative analysis showed that Lines
and Circles outperformed Bars in terms of actual user performance

(as measure by the post hoc ratings), Bars was ranked highest by

participants. In our follow-up interviews we found that detailed

feedback was more favored by experienced practitioners
13

and in

situations where the user wants to perfect exercise form. Abstract

feedback, such as Bars, was preferred by less experienced users

and for daily workout scenarios. In general, all forms of feedback

were noticed by the participants and used to adapt their exercise

form to a large degree as confirmed by our custom questionnaire,

highlighting the viability of EMG-based feedback to facilitate bodily

insights.

While usability and perceived workload metrics showed no sig-

nificant differences for feedback type, interviewees reported that

Lines required higher cognitive effort, mostly to understand the

complex signal. This might have been masked by the fact that users

were always monitored by the system, hence implicitly forcing

them to concentrate more as stated in the interviews.

Further, our experimental investigation with FitBack demon-

strated that low-cost EMG sensing devices are suitable to monitor

exercise form. While accurate detection of correct form is not pos-

sible with the employed algorithm, this analysis showcased that

having access to detailed EMG data is beneficial to judge exercise

form for both laymen and versed practitioners. Hence, in this next

evaluation step with sports professionals, we put emphasis on this

aspect by allowing them to monitor the EMG signal in detail to

explore a variety of exercises.

5 STUDY II: INTERVIEWSWITH COACHES
Our initial study confirmed the feasibility of building an EMG-based

exercise assistance system and showed the breadth of the design

space. In order to further understand the requirements and con-

straints involved in using EMG systems for physical activity in

general, we conducted a series of interviews with sports profession-

als in which participants used FitBack in an open-ended exercise

session.

5.1 Participants
We recruited four experts who were career sports coaches with

different backgrounds and varying levels of experience, see Table 1.

13
As indicated by their weight training experience.

We recruited the experts through contacts at sports clubs whose

members had participated in previous studies conducted by the

research team. None of the participants had used EMG systems

before, but they had all tried Electrical Muscle Stimulation (EMS)

as part of their profession. The interviews took place at locations

chosen by the participants. We provided shopping vouchers for the

equivalent of USD 12 for participating in the study.

Table 1: Information about the participants in our study. The
sports professionals specialized in different sports and had
different levels of experience.

Participant ID Age Gender Expertise Experience

P1 32 M Personal trainer 8 y

P2 27 F Yoga 4 y

P3 36 M Martial arts 15 y

P4 33 M Martial arts 15 y

5.2 Procedure
The interview session began by obtaining written consent for par-

ticipation and recording. Next, the researcher prepared the FitBack

system in a location chosen by the participant. A voice recorder and

a video camera were used to record the session. We then conducted

the initial part of the interview, which concerned the participant’s

background and experience with EMG/EMS. Afterwards, we asked

them to choose a movement form that was particularly difficult for

their students and indicate which key muscles were involved in that

movement. Upon choosing the exercise, the researcher attached

electrodes to the key muscles. FitBack was started and muscle activ-

ity was visible. We then asked the participant to perform the motion

correctly and incorrectly. We encouraged them to explore different

possible mistakes and to examine how FitBack reacted to changes

in movement (see Figure 7). We also answered any questions the

participant may have had while exploring the system. When they

indicated that they were done experimenting with the motion, we

conducted the next interview part. These questions explored the

participant’s interpretation of the EMG signal, differences between

signals from different muscles, the suitability of the feedback for

everyday coaching and identifying mistakes in movement. We then

allowed the participant time to rest and repeated the same proce-

dure for another type of motion. Finally, we conducted an interview

where we inquired about the differences in feedback between the

two exercises, the possible target user groups for EMG systems,

the use of EMG for professional development and requirements for

everyday integration. The entire session was recorded on video,

and additional voice recording was used when asking interview

questions. We also recorded the FitBack screen.

5.3 Data analysis
All interviews (2:16 hrs of recording) were transcribed verbatim.

Given the volume of the data, we again followed the pragmatic

approach to qualitative analysis as recommended by Blandford et

al. [7, 53]. In an initial analysis step, two researchers open-coded one

interview to identify key concepts. We then conducted a discussion,
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Figure 7: Participants during the exploration phase performing different exercises.

which resulted in an initial coding tree. The remaining material was

then evenly split between the researchers. Afterwards, all authors

refined the coding tree in iterative discussions, finally creating a

code hierarchy with four themes. These themes represent the key

aspects of using EMG in sport coaching practice discussed by the

experts.

5.4 Findings
Here, we present the results of the interviews with the sports pro-

fessionals. We identified four themes in the accounts of using EMG

provided by the experts: Assessment, Body Awareness, Exercise

Form and Interpretability. Quotes from the interviews are ac-

companied by the participant ID and, if applicable, the exercise

which they were describing.

Assessment.
This theme describes how the coaches used EMG feedback to assess

the correctness of a given body position and how they identified

issues with posture. We observed that the experts quickly reflected

on EMG data and related the reading to their current movement.

Interestingly, low EMG signal was as interesting as high muscle

activation, because some exercises required relaxing muscles:

This is very easy to apply when I’m in a static position,
which I want to hold. When I’m doing this correctly, I
am more or less relaxed. (P4, cadeira)

The experts also described another way to effectively use EMG

to assess correctness which was to determine if the right muscles

were active during a specific movement. P1 explicitly addressed

how specific muscles should work during push-ups.

I can see if I’m activating the deltoid when moving up,
as I should. [FitBack] tells me if I’m beginning the move-
ment by raising my shoulder and using the descending
part of the trapezius. (P1, push-ups)

Finally, he also reflected on the impact that being able to objectively

assess an exercise would have on fitness instruction. Being able to

confirm one’s professional opinion with objective data was seen as

an opportunity for proving the coach’s credibility.

Body Awareness.
EMGwas perceived as away to see beyondwhat they could perceive

using their professional insight. P2 remarked that FitBack could be

used to determine what muscles were targeted in new exercises,

previously unknown to the coach and their students:

You often see those things online: “100 best planks” etc...
but you never fully know what these exercises do. With
[FitBack], you can see what’s inside, check if [the mus-
cle] is even contracting. (P2)

EMG also allowed the experts to better understand the transitions

between different body postures and movement forms. While they

knew what muscles were to be active (or inactive) during defined

exercises, EMG allowed investigation into what happened in the

intermediate stages of the movement. P3 analyzed how his body

worked while adjusting his posture in a complicated handstand:

When I changed the alignment of my body, moved my
legs, you could ideally see where I contracted the muscle
very hard and where it was weaker. (P3, queda de rins)

Exercise Form.
This theme describes how EMGwas used to reflect different exercise

styles and different ways of understanding physical activity by

coaches and their students. The coaches were eager to speculate on

how different types of their class attendees may have perceived the

feedback. In contrast to assessment, here, the experts described

implicit, less defined qualities that can be inferred from EMG data.

The need to place EMG electrodes implicitly required reflecting

about the key muscles involved in the exercise:

Figuring out where to place the electrodes is interesting
by itself. If I were to do this myself, I would experiment
with this, stick it somewhere, check it out. (P4)

The additional information provided by FitBack facilitated exercis-

ing while being aware of the benefits of the exercise. P1 commented

extensively on how past philosophies of training promoted max-

imum exertion, while more modern methods preferred targeting

specific muscles and avoiding injury. He saw EMG as a way to

facilitate this transition from simple exertion to informed practice:
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All the way, just to get super tired and feel pain. If
you can’t push through the pain, then you’re weak. (...)
But, the modern school of training is not about lifting
very heavy bars. You’re supposed to slowly learn how
to activate specific muscles. I think that most people
appreciate that in the long run. (P1)

The coaches provided many comments on the temporal aspect of

EMG data. They reflected that timing was differently important in

various exercises and requested more control over the time scale. Es-

pecially P3 and P4 (martial arts specialists) remarked that a change

of tempo and thus change of the speed of muscle activation was a

key aspect of their practice:

It can be used for all the static exercises. I imagined that
for dynamic things, it might be different. Capoeira has
the full spectrum of exercises and thus paying attention
to relaxing muscles is important. (P3)

Interpretability.
The coaches commented extensively on how they interpreted the

output produced by FitBack. They wondered about the form and

timing of the feedback and anticipated possible deployment in their

exercise classes. The experts anticipated how their students would

understand EMG data and how FitBack could benefit the training

process. The coaches remarked that EMG in the form presented by

FitBack would be too difficult to monitor for larger fitness classes:

It would be tough for classes where we have a lot of
people. One coach won’t be able to interpret the muscle
behavior of many people. But, for personal training, this
would be very suitable. (P3)

The experts remarked that EMG had the potential for changing

achieving proper form in exercises from a vague pursuit of correct-

ness to a tangible goal. P4 reflected on how a well-known exercise

was a challenge when FitBack provided detailed feedback:

It was very stimulating because I was trying to do the
exercise better so that it was more visible on the screen,
(...) because I like tangible challenges. (P4, primera)

Our experts underlined the importance of associating specific EMG

responses with proprioceptive perception, i.e. ‘how a movement

felt’. As most fitness classes focused on mastering specific forms

and limiting the use of incorrect forms, quantifying how far one

was from an ideal movement was key to interpreting the EMG data

and one’s body. One participant saw FitBack as a tool for iteratively

developing more precise movements and fine-tuning one’s perfor-

mance. EMG data enabled minuscule changes to posture which

would be visible in the measurement data, but hard to perceive with

one’s senses.

In functional training, where the key goal is developing
correct movement patterns, the basic movements are
key. Here, [FitBack] can be very useful, guiding you to
find the ideal ratio, the perfect movement. You can then
copy the movement and master its execution (P3).

6 DISCUSSION
Our investigation showed the potential of EMG-based biofeedback

to facilitate bodily insights during physical activity. In this section,

we draw implications and present opportunities for future systems.

We conclude with a list of guidelines for designing for EMG-based

biofeedback that allows users to increase their own body awareness.

EMG-Based Biofeedback is Feasible with Wearable Recording Devices.

Our quantitative analysis in the first study showed that both FitBack

and the coach rating perform less accurately than post hoc review-

ers who have access to the EMG data when it comes to recognizing

exercise form (RQ1). In the current version, FitBack’s movement

analysis is based on correlation coefficients of the respective mus-

cle groups. We believe a more elaborated classification approach,

e.g., using multiple features to describe relevant characteristics

of the EMG curve, allows one to identify execution more accu-

rately. However, this results in a trade-off between the amount
of customization needed for a specific exercise (e.g., training
the model to detect common errors of biceps curls) and the ability
to generalize feedback for a wide array of fitness exercises
(RQ1), as illustrated in Study II. Our findings also suggest that

EMG-based feedback can be effectively used to build both prescrip-

tive and reflective feedback in HCI for sports. EMG-based systems

which support exercise can give users explicit instructions (e.g. as in

Gymsoles [18]) or present the signal to be interpreted by the user or

coach. This emerges as a key design choice for future technologies

which support amateur athletes.

In this work, we intentionally refrained from building a sophisti-

cated data processing model to keep the amount of required domain

knowledge that informs the model training process to a bare mini-

mum. Building a fully automatic system to supervise specific fitness

exercises is outside of the scope of this paper. We already know

from related work that it is feasible to build accurate detection

systems using EMG [3, 39, 59]. In contrast, FitBack is designed to be

an aid for amateurs and coaches alike by presenting data about
muscle activity in a comprehensible manner and letting the
user reflect on their data (RQ1), thus contributing to their own

body awareness.

EMG-based Biofeedback Increases Body Awareness.
We observed that FitBack provided expressiveness and supported

users in gaining bodily insights about their own muscle activity and

exertion, cf. Gaining Insights, Interpretability. Both studies re-

vealed that FitBack was able to accurately depict transition between

body posture, clearly showing active and inactive muscle groups. As

a result, participants perceived which muscles were used. This find-

ing was not only evident for experienced users but also present for

novices. Through increasing one’s own body awareness, FitBack
was able to facilitate a tangible learning process that mini-
mized erroneous execution (RQ2). An area for future research

is to investigate whether such feedback can help maintain correct

form over time, which can contribute to reducing injury risk. This is

particularly relevant as experts in our study remarked that FitBack

supported informed practice, allowing users to track their own

fitness progress and presenting them with visible achievements

that might otherwise have been hard to grasp or require personal

supervision by coaches. Hence, biofeedback supports users in judg-

ing their own progress as well as empowering coaches to provide

better feedback (RQ2).
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Access to Detail is Beneficial for Practitioners and Coaches Alike.
In our analysis, the detailed feedback was favored mostly by expe-

rienced sportspeople. Our interviews with professionals revealed

that the additional temporal component allowed them to analyze

their movements in greater depth and supported them in perfecting

their exercise form. Often, minuscule improvements where only

visible in the EMG data, allowing coaches to monitor otherwise
invisible muscle activity and curate an appropriate training
response (RQ2). This finding implies that systems inHCI for sports

which feature a prominent temporal component are likely to bene-

fit from EMG-based feedback, which can allow for a high level of

fidelity and potential for interpretation. For example, in golf, an

EMG-based system could not only indicate that the user’s body

is misaligned (as in the Subtletee system [73]), but also help the

user understand how to alter the movement to achieve the desired

posture.

Additionally, both studies highlighted that the detailed temporal

feedback was especially useful for dynamic exercises where the

correct sequencing of muscle movements is crucial. Accordingly, an

EMG-based biofeedback system should always provide a feedback

view that allows to examine historic data. Future systems can im-

prove the interaction with this view, by providing exercise markers

within the view and even a corresponding recording functionality

(RQ1, RQ2). As a consequence, designers of future technolgies for
sports should consider providing detailed feedback for reflection-

based technique improvement as an alternative to systems which

provide automated corrections through on-body input such as Foot-

Striker [28].

Required Setup for EMG-Based Biofeedback Needs to be Minimal.
To record electromyograms, FitBack requires the user to attach

electrodes on respective muscle groups. This is a major limitation

of not only our system but every EMG-based system. While par-

ticipants reported that the attached electrodes and cables did not

hinder their exercise execution, the required time for setting up

the system was deemed acceptable only for continued workouts or

when one wanted to gain additional insights. For daily workouts,

the required effort was rarely deemed acceptable. In this work, we

explicitly focused on user requirements and constraints with re-

gard to the suitability of EMG-based biofeedback to increase body

awareness during physical activity (RQ2). We envision that more

biofeedback systems will be integrated into affordable wear-
able artifacts and clothing in the near future (cf. PhysioSkin [56],
PolySense [32]), enabling easy and fast setup routines as is already

possible with commercial products for professionals.

6.1 Design Guidelines for EMG-Based
Biofeedback

During our work, we identified opportunities, requirements, and

constraints of EMG-based biofeedback for physical activity. In

this section, we provide a list of design guidelines for EMG-based

biofeedback systems to inspire and aid in the design of future EMG

systems for sports.

Offer Feedback Customization.
The different user groups in our study had differing requirements in

terms of feedback. FitBack offers two different feedback modalities

(visual and auditory) as well as abstract and detailed representations

of the visual feedback. In our evaluation, we found that while the

Bars visualization was most preferred, our interviews and quantita-

tive results have also shown that access to multiple types allows the

system to tailor to a broad audience. There was no feedback form

that would not affect exercise form or was ignored by the partici-

pants (RQ1, RQ2). Novice users preferred abstract feedback that

was less cognitively demanding and easy to interpret, cf. Cognitive

Effort. On the other hand, switching to more detailed feedback

should always be possible for more experienced sportspeople (RQ2).
In the interviews with coaches, we observed that the understand-

ing of feedback can be different for different movements within

the same sport. Thus, an EMG feedback system for physical
activity must offer output that dynamically changes based
on the current activity. This finding is in line with past research

in HCI for sports, which showed that customization and allowing

fine tuning was also effective for less complex sensing modalities

from accelerometers [73] to note taking [29].

Users exhibited varying preferences with regard to audio feed-

back. While some participants reported that it helped them keep

their focus during a continued workout without having to look at

the visual feedback, others strongly preferred visual cues, cf. Feed-

back Type and Granularity. Thus,multi-modal feedback sys-
tems should provide a choice for the user to prevent sensory
overload (RQ2).

Allow for Temporal Control.
While our experimental study used only immediate feedback, the

interviews with professionals revealed that EMG data was meaning-

ful for understanding motion in different time horizons. The experts

commented on their need to experiment and establish thresholds

of correctness for different exercises, cf. Exercise Form. They also

wanted to establish baselines and be able to review past exercises

to draw comparisons, similarly to existing commercial products.

They recognized the benefits of EMG data both in intantaneous use

and over entire exercise session. As a consequence, future EMG
systems for exercise should offer a high degree of control
in terms of the time intervals used to aggregate and display
EMG data (RQ2).

Design for Social Context.
Both of our studies showed that participants were eager to consider

using FitBack in contexts associated with everyday exercise. What

became apparent in the interviews was that these contexts were

primarily social and possible social interaction impacted possible

interpretations of EMG data. As we observed in the Interpretabil-

ity theme, experts reported that feedback modalities for individual

sessions should be very different from the feedback in group fitness

classes (RQ2). Further, they also noted that the use of EMG could

be dependent on a certain fitness philosophy or mental approaches

to a given exercise. Participants in both studies reported that they

often changed the social contexts of their physical activity. Thus, we

recommend that the granularity of EMG feedback be adjusted
to allow for adequate interpretation. Producing detailed EMG

feedback in a context where it cannot be effectively interpreted

is likely to cause frustration. Future systems should offer detailed

data for individual classes and self-monitoring and ambient and/or

summary feedback that would enable coaches in group exercises
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to monitor the activity of multiple users (RQ2). Thus, future sys-
tems should strive to find a balance between optimally using the

expertise of the user and providing coaches an optimal experience

of understanding one’s body. Our research shows that coaches can

include the interpretation of rich feedback in their coaching prac-

tice. This is in contrast to past studies, where the role of the system

was primarily to provide a replacement for the coach [39, 73] or

cases where coaches identified issues in systems [36].

6.2 Enabling Alternative Use Case Scenarios
for EMG-Based Biofeedback

While EMG-based biofeedback is already employed in professional

sports to achieve maximum performance, amateur sportspeople

cannot readily benefit from such technologies. In this paper, we

showed how EMG-based biofeedback can support a wide range of

users in gaining deeper insights into their own physiology through

interpreting the EMG signals. To further illustrate this aspect, we

describe two use case scenarios that highlight how systems like

FitBack integrate into existing training regimes.

6.2.1 Facilitating Body-Awareness for Physical Activities. Jasha re-
cently started to conduct basic strength exercises. However, Jasha

has no insights into the correct execution of the activities. He de-

cides to buy “MusclePower”, a wearable that recognizes curls via

the built-in accelerometer. During the first weeks, he is pleased

with his performance as MusclePower tells him that his exercise

form is optimal. However, a friend of his remarks on the excessive

tension in his shoulders during a joint training session and recom-

mends him to try FitBack. Jasha already had a hunch that he was

doing something wrong, as he noticed periodical back pain in the

last weeks, but he did not know what he was doing wrong. With

FitBack’s live visualization, he finally recognizes that he uses the

muscles around the deltoid too much and adjusts his exercise form

over time. Jasha realizes that the exercise feels different now. He

needs to put much more effort into the movement, and he is finally

confident in his exercise form.

6.2.2 A Complementary Tool for Coaches. Maxime is a coach who

is training amateur athletes. However, due to training centers and

the accompanied sessions being distributed, Maxime invests a con-

siderable amount of time traveling to her clients. She is spending

most of the time analyzing her clients’ postures, correcting exercise

routines. Maxime hears of FitBack, a system that collects and visu-

alizes muscular activity, which can be viewed remotely. Maxime

decided to give it a try as she can invest the saved travel time to

improve her clients’ overall training quality. Maxime is impressed

by how she can correct the athletes’ training postures by viewing

the live EMG visualization while providing instructions using a

video conference system. Additionally, FitBack allows her to record

and annotate the visualizations, which is helpful for post hoc anal-

ysis to optimize the training sessions further. By gaining additional

insights into her students’ exercise form, Maxime can give more

direct feedback and has objective evidence of the correct form.

7 CONCLUSION
In this paper, we investigated how EMG-based biofeedback can facil-

itate bodily insight during physical activity. Our two-fold

evaluation, consisting of a lab study with amateur users and inter-

view sessions with sports coaches, highlights the feasibility of this

approach. We present implications and design guidelines for future

EMG-based systems, allowing users to gain deeper insights into

their own physiology by leveraging user-driven interpretation of

bodily signals. Our work showed that feedback about one’s mus-

cle activity and exertion is beneficial for a broad audience, from

novices to fitness professionals. Here, we found no necessity for

complex algorithms preparing the signal for users to ease under-

standing. All of our participants were capable of interpreting their

own EMG recordings, leveraging them to benefit their exercise

form. We believe that these findings will inspire further research

in understanding how users access and reflect on provided feed-

back, a key element to creating interactive systems beneficial to

our wellbeing.
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