
DronOS: A Flexible Open-Source Prototyping Framework for
Interactive Drone Routines

Matthias Hoppe, Marinus Burger, Albrecht Schmidt, Thomas Kosch
{firstname.lastname}@ifi.lmu.de
LMU Munich, Munich, Germany

(a) (b) (c)

Figure 1: DronOS is a framework which enables novice and expert users to prototype custom drone routing and behaviour.
DronOS provides the three exemplary interactionmodalities (a)Unity Scripting, (b) Vive Scripting, and (c) Vive Realtime which
enables an agile definition of flying paths.

ABSTRACT
We present DronOS, a rapid prototyping framework that can track,
control, and automate drone routines. Previous research in the
domain of Human-Drone Interaction relied on hardware or pro-
prietary vendor-dependent libraries that had to be exclusively pro-
grammed for specific use cases. This forces users to stick with a
drone manufacturer or model as well as limiting users in transfer-
ring their drone control logic to other drones. To overcome the
aforementioned issues, our framework uses low-cost off-the-shelf
hardware and applies to a variety of already available or self-crafted
drones. To assess the usability of DronOS, we evaluate three drone
programming modes: Unity Scripting, Vive Scripting, and Vive Re-
altime. We find that Vive Scripting required the least subjective
workload in programming drone routines while Unity Scripting
yielded the highest accuracy and Vive Realtime the least task com-
pletion time. We anticipate requirements for drone prototyping
frameworks that target novice and expert users as operators.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MUM 2019, November 26–29, 2019, Pisa, Italy
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7624-2/19/11. . . $15.00
https://doi.org/10.1145/3365610.3365642

CCS CONCEPTS
•Human-centered computing→User interface programming;
User interface toolkits.

KEYWORDS
Drones; Automation; Human-Drone Interaction

ACM Reference Format:
Matthias Hoppe, Marinus Burger, Albrecht Schmidt, Thomas Kosch. 2019.
DronOS: A Flexible Open-Source Prototyping Framework for Interactive
Drone Routines. In MUM 2019: 18th International Conference on Mobile and
Ubiquitous Multimedia (MUM 2019), November 26–29, 2019, Pisa, Italy. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3365610.3365642

1 INTRODUCTION
Drones have emerged as interaction devices in home and research
applications. The community around the domain of Human-Drone
Interaction (HDI) focuses on the use of drones as user interface [11].
Recently, a large number of various application domains took ad-
vantage of drones for several use cases. For example, drones have
been used as tactile in virtual reality [17, 20], employing safety
features [8, 24, 25], and supporting visually impaired people dur-
ing navigation [6, 7]. Such use cases show that the flexibility of
drones can be used to augment user interfaces in their functionality
as well as provide context-aware in-situ interaction. Furthermore,
drones can serve as levitating tangibles that enable proactive 3D
interaction spaces regardless of the user positioning [19].

https://doi.org/10.1145/3365610.3365642
https://doi.org/10.1145/3365610.3365642


MUM 2019, November 26–29, 2019, Pisa, Italy M. Hoppe et al.

The recent development in HDI is fostered by the availability of
drones in the consumer and commercial markets. Various research
projects show that drones are a unique tool that allows objects to
be quickly placed in three-dimensional space without any kind of
suspension in indoor and outdoor locations [18]. Smaller hardware
and the increasing demand for further use cases, such as the de-
livery of goods [13] and area surveillance [26], has proliferated
the development of toy and custom made drones. While consumer
drones can be controlled and used out-of-the-box, their usage is
often limited to the intended functionalities. Thereby, extensions re-
quire direct modifications to the hardware and reverse engineering
of the control logic. Furthermore, while manual drone navigation
via a controller can be easily accomplished by a human operator,
the automatisation of drones can be algorithmically challenging.

Several factors contribute to this issue. The programming of
drones is prone to vendor-dependent libraries and communication
protocols that become prone to noise if the distance between the
drone and the operation unit is large. In otherwords, exchanging the
drone entails adjustments to the current algorithmic implementa-
tion of the software control and communication unit. Furthermore,
depending on the user context of the drone, the location of the
drone needs to be known, which may require an expensive track-
ing system [17]. Currently, the automatisation of drone routines
requires technical expertise to tailor them for the respective use
case [18]. The aforementioned factors prevent the rapid deployment
of drones for testing and research purposes. As an alternative, a
Wizard of Oz approach has been used to gain initial insights into the
results of employing HDI for respective use cases [5, 10]. However,
specialised labour is necessary to operate the drone.

This work presents DronOS, a Unity-based drone framework
that circumvents the aforementioned challenges. DronOS repre-
sents a drone routing prototyping platform (see Figure 1). DronOS
uses affordable off-the-shelf hardware that is part of the commer-
cially available HTC Vive bundle1. DronOS can be employed into
new or existing Unity projects and uses HTC Vive Lighthouses
as a tracking system (see Figure 2). The software counterpart is a
framework in Unity that allows for easy programming of the drone.
Programming by demonstration and manipulation of checkpoints
are supported using the Unity framework. We conduct a study to
showcase and compare three automated path navigation modalities
using DronOS. Furthermore, we discuss the design implications
that support interface designers when creating new HDI.

CONTRIBUTION STATEMENT
Our work makes three key contributions: We (1) describe DronOS, a
framework that uses affordable hardware for drone navigation and
automatisation. DronOS enables expert as well as novice users to
orchestrate drone movement sequences through a Unity interface.
Furthermore, we (2) present a study in which three route planning
modalities are showcased and evaluated regarding their route plan-
ning efficiency. Finally, we (3) discuss the relevant implications
and lessons learned for future frameworks that aim to simplify the
programming of drone behaviours.

1www.vive.com - last access 2019-10-10

Figure 2: Key components of DronOS: The Unity-based
framework DronOS provides drone routines. The radio con-
trol connection allows the usage of custom and off-the-shelf
drones. TheHTCVive Lighthouse system is used as tracking
system.

2 RELATEDWORK
We present recent research that has tackled the challenges of drone
orchestration and interaction in the following. With BitDrones [12,
28], a toolbox for drone movement sequences and orchestration is
presented. Dronesmay represent levitating tangibles for interaction,
where users can perform input or perceive output using RGB lights
or displays. However, the current implementation of BitDrones
relies on custom-made drones and an expensive tracking system.
Cauchard et al. [9] presented Drone.io, a platform that is capable
of providing a variety of gesture- and foot-based interactions. In
three user studies, several interactions and interface designs were
evaluated. With drones becoming more and more present, drone
interaction concepts that do not disrupt daily tasks are increasing
in importance. Relevant factors, such as proxemics, safety risks,
and transparency have to be communicated with users to assure
non-problematic interaction [31]. Abtahi et al. [3] investigated how
drones serve as a proxy for objects which provide haptic interac-
tion. They demonstrate the feasibility of their system in a virtual
shopping experience and evaluate different drone affordances that
contribute to drone interaction. Past research has investigated con-
cepts related to HDI. In the following, we present recent research
which uses these concepts to provide interaction with drones.

Drones extend tangible interaction within a 3D space. Knierim
et al. [19] explored modalities that use the 3D space for interaction.
They evaluate input and output modalities, such as pushing or being
dragged by drones, in their suitability for interaction. A physical
interaction space is derived which helps user interface designer to
understand how paradigms influence spatial relationships between
users and drones. Besides for interaction purposes, autonomously
flying drones have been used to capture video material from a per-
spective that is otherwise difficult to reach. In XPose [22], three
predefined interaction modes to take photos using drone-mounted
cameras are presented. The interaction modes were designed to
simplify secondary tasks, such as taking photos, while controlling
a drone. While the aforementioned work uses a touch interface to
interact with the functionality of drones, Kosch et al. [21] evalu-
ates pointing gestures with and without visual feedback to control
drones in a 3D space. Their findings include a trade-off between

www.vive.com


DronOS: A Flexible Open-Source Prototyping Framework for Interactive Drone Routines MUM 2019, November 26–29, 2019, Pisa, Italy

accuracy and speed for drone positioning. Using visual feedback
while performing a gesture yielded a higher accuracy compared to
obviating visual feedback. However, performing gestures with no
visual feedback resulted in faster task completion times.

Hoppe et al. [17] explored the use of drones to augment the
haptic perception of objects in virtual reality. Their findings endorse
the use of flexible drone positioning to dynamically adjust the
haptic experience. However, haptic stimulation by drones may
vary in their intensity and requires a realistic mapping between a
perceived scene and the haptic sensation. Therefore, Abdullah et
al. [1, 2] investigated how different haptic and tactile stimulation
sensitivities of drones need to be adjusted to provide a realistic as
possible interaction scenario. However, such close interactions with
drones may elicit security issues among users. Therefore, previous
research has investigated how users interact with nearby drones [4]
where interactions via gestures, touch, and sound, as well as a
multimodal combination, was confirmed as comfortable by the
participants.

Drones have shown to be beneficial as navigation modality for
visually impaired people. Avila et al. [6] demonstrated how the
noise of drones can be used for navigation. The produced sound
is envisioned as a promising method for navigation. Furthermore,
drones can carry objects which are intended to provide navigation
cues for visually impaired people. For example, a leash carried by
a drone [7] has been used for guidance. Less time was required
as well as fewer navigation errors were made using acoustic or
leashed drones compared to traditional audio instructions.

The implementation of custom drone control loops is often re-
stricted to the programming interfaces which are provided by the
manufacturers. Furthermore, proprietary radio interfaces, such as
modified Bluetooth stacks or encrypted communication channels,
make it difficult for novice users to program a custom drone in-
terface. We close this gap by proposing DronOS, a prototyping
framework capable of automating drone flight processes. Drone
flight behaviors can be programmed using a Unity interface that
provides functionalities suitable for novice and experts. DronOS
uses standardised software toolkits and off-the-shelf hardware to
establish a communication between the drone and intended user
action.

3 DRONOS: A DRONE NAVIGATION
FRAMEWORK

Previous work informed about the relevant requirements of drones
for user interaction.We present the concept, implementation details,
and user interface of DronOS in the following.

3.1 Concept
Autonomous drone routing has been a challenging topic in var-
ious contexts [30]. Drones have to provide a reliable connection
regarding tracking as well as remote control purposes, employ
safety-related features, and communicate the influence of adjusted
drone parameters with users. To accomplish these requirements
for use cases in-home and research, drones need to provide a user-
friendly programming interface, stable communication protocol,

and rapid prototype features. By using standardised software pack-
ages, a Unity-based communication interface, and available off-the-
shelf hardware DronOS unifies these aspects in one framework.
Thereby, DronOS can be used with any commercially available or
custom-made drones. DronOS comes with three routing planning
modalities: Unity Scripting, Vive Scripting, and Vive Realtime. In the
following, we present technical details regarding the realisation of
DronOS and elucidate the routing modalities.

3.2 Tracking
DronOS uses HTC’s Lighthouse2 tracking technology which is
available within a regular HTC Vive setup. The HTC Lighthouses
offer a simple calibration procedure in indoor environments. The
HTC Lighthouses use infrared lights to determine where objects
are located. The current iteration of the Lighthouse system covers
a tracking space of up to 10× 10 meters.

Conversely, drones have to be equipped with a Vive Tracker3 to
be tracked. With the Lighthouse tracking system, the drone only
needs to be outfitted with a Vive Tracker (see Figure 3). Alterna-
tively, one of the many home-brew Vive Tracker alternatives can
be used, which may be available in lighter and smaller sizes. The
HTC Lighthouse tracking system only needs a few minutes of set
up and calibration. This enables easy setup, low budget tracking
for automatisation, and space-saving setup as the HTC Lighthouse
boxes can either be mounted on a wall, ceiling, or on a tripod. We
use a 3D printed retainer to mount the Vive Tracker on the drone.

Figure 3: Drone Prototype with a 3D-printed customisable
frame, radio controlled communication interface, HTCVive
Tracker, and safety nets.

3.3 Unity
Unity4 is a 3D game engine that comes with a programming inter-
face. We use Unity to check the position of the drone and calculate
commands according to the planned drone routing and the HTC
Lighthouses. To record the position of the Vive Tracker mounted
on the drone we use the SteamVR Unity plugin. This allows the
integration of the Vive Tracker mounted on the drone and registra-
tion of input commands that are used for programming the pathing
via programming by demonstration.
2www.vive.com/eu/accessory/base-station - last access 2019-10-10
3www.vive.com/eu/vive-tracker - last access 2019-10-10
4www.unity3d.com/unity - last access 2019-10-10

www.vive.com/eu/accessory/base-station
www.vive.com/eu/vive-tracker
www.unity3d.com/unity


MUM 2019, November 26–29, 2019, Pisa, Italy M. Hoppe et al.

Figure 4: Control loop of the framework. DronOS controls
the PID parameters and uses an ESP32 to transmit flight
commands via radio control.

The Unity programming interfaces makes the planning and mod-
ification of flight routines more accessible for a non-expert. DronOS
makes use of this programming interface. Through Unity, it allows
programming and scripting of drone flight paths and behaviours
without any prior knowledge of coding, as it can be used in a fully
visual fashion. While prior Unity knowledge helps to use the frame-
work, it is not necessary. DronOS comes with implementations of
the three drone programming modes Unity Scripting, Vive Scripting,
and Vive Realtime on which we elaborate in the following.

3.3.1 Unity Scripting. This mode utilises the Unity user interface
for the detailed definition of routines. Newwaypoints can be created
by drag-and-drop of so-called "Waypoint Objects" that represent
cubes as game objects (see Figure 5a). The user can change the
position by dragging or entering the coordinates of the game ob-
jects and if desired. Settings such as dwelling times (i.e., the drone
remains the same position) can be changed by modifying values the
properties of each node. General settings regarding the drones PID
can be adjusted as well. The available tracking area is presented
by a border in the Unity scene, as the SteamVR Plugin is used for
the tracking components. Positions and distances of waypoints can
either be set by moving the waypoint along X-, Y-, and Z-axis or
entering the coordinates directly. Conversely, this requires the user
to measure the distances manually.

To set a waypoint in a specific real-world location, the coordi-
nates have to be entered to the zero point of the tracking space.
For this method measuring the real space is required to get the cor-
rect coordinates This approach is similar to most current systems
used in research. This is the most detailed mode that requires more
work in creating a flight routine, but also offer the most options for
single waypoints. Further, this mode can be used to tweak flight
routines that are created in other modes. Users then confirm their
adjustment to start the drone.

3.3.2 Vive Scripting. A programming-by-demonstration approach
that creates flight routines by marking positions in the real world.
The user creates the next waypoint in a routine by positioning a
handheld Vive controller5 at the desired location (see Figure 5b).
The Vive controller employs the same technology as the Vive Track-
ers and can thus be used with the Lighthouse tracking technology.
The position is logged by clicking a button on the controller. This
approach is a fast and easy way of prototyping a flight routine and
setting up waypoints in real space without the need for measur-
ing distances and entering coordinates manually. If required, the
flight routine can be tweaked by going to the desktop and editing
waypoint nodes in the Unity Scripting mode.

3.3.3 Vive Realtime. Similar to the work presented by Kosch et
al. [21], the user controls the drone directly by pointing with a Vive
controller to the final target. The drones fly then, in real-time, to the
pointed position (see Figure 5c). The steering of the drone is easier
as the drone is following the user’s hand movements. This gives
the user a feeling for the drone and its impact on the world, as it
directly follows the user’s input. This live-performance of the flight
path can be recorded and could later be played back by ghosting
the user’s movements.

3.4 PID Controller
To accomplish autonomous flight, a control system had to be de-
signed that reacts appropriately to the current tracked position
and target positions. This was implemented as a set of layered
Proportional-Integral-Derivative controllers (PID controllers) which
is derived from the PID controller architecture by Luis and Ny [23].
A PID controller calculates the discrepancy of the current position
and the next waypoint, and then applies a correction based on
proportional, integral, and derivative characteristics. A preset of
PID values are already available, as setting these requires some
experience and expertise, but can be tweaked if desired. When a
drone flies a path, the impact of the changes is directly applied to
the drone flight process. As HTC Vive Lighthouses and the Vive
Trackers update with 90 Hertz, the rate of the PID controller was
set to 90 Hertz as well.

3.5 Communication
For the drone being able to execute the commands, they need to
be transmitted from the Unity programming interface. Therefore,
the calculated commands need to be sent over a transmitter to the
drone. In this setup we used a FrSky Taranis X9D6 remote as the
transmitter. The remote is usually used as an input device for a
human user, but in this case, the input will be automated by the
Unity interface. The Taranis X9D transmitter runs OpenTX7, an
open-source firmware for RC radio transmitters. OpenTX is rich in
features, highly configurable and can be incorporated in any other
controller that supports OpenTX. The communication between
computer and transmitter was realised through a micro-controller
that generates the required protocol signal to the radio frequency

5www.vive.com/eu/accessory/controller - last access 2019-10-10
6www.frsky-rc.com/product/taranis-x9d-plus-2 - last access 2019-10-10
7www.open-tx.org - last access 2019-10-10

www.vive.com/eu/accessory/controller
www.frsky-rc.com/product/taranis-x9d-plus-2
www.open-tx.org


DronOS: A Flexible Open-Source Prototyping Framework for Interactive Drone Routines MUM 2019, November 26–29, 2019, Pisa, Italy

(a) (b) (c)

Figure 5: Three drone routine modalities implemented in DronOS. (a): User defines the routing path directly in Unity. (b):
Defining a flight path with HTC Vive controllers. (c): Controlling a drone with real-time feedback using pointing gestures and
an HTC Vive controller as a remote pointing device.

(RF) transmitter. We chose the ESP328 microcontroller as our plat-
form for translating the signals for the transmitter. The ESP32 has
several dedicated hardware peripherals such as RF modules, wire-
less LAN or Bluetooth. The ESP32 development boards come with
a hardware peripheral remote control module (RMT) driver, which
is capable of generating very accurate high-frequency signals. A
Pulse Position Modulation (PPM) protocol was implemented, which
together with the RMT driver module of the ESP32, leads to a safe
connection combined with the transmitter. The ESP32 generates a
PPM signal from the serial input and after level converting the logic
level 3.3V to 5V this signal is forwarded to the trainer port of the
transmitter. The transmitter then operates the external RF module
that was bound to the RC receiver on the drone. An overview of
the communication can be found in Figure 4.

3.6 Drone Hardware
We use a custom drone to evaluate DronOS. However, it is possible
to use every commercially available drone in combination with
DronOS. For the custom drone, we decided to use components
(e.g., materials, motors, propellers, etc.) that minimise the payload
and maximise the flight time. This gives researchers the possibility
to attach additional hardware, such as sensors or cameras, to the
drone.

The drone employs a Matek F405-CTR9 flight controller running
the Betaflight10 flight controller firmware. The drone incorporated
four motors from the type T-Motor F40 III 2600KV which can lift
1.398 kilograms per motor according to laboratory testing environ-
ments [27]. The same motors have been used in previous related
research projects [15]. The remaining parts, such as retainers for
motors and the flight controller, were 3D printed. Furthermore, 3D-
printed protective nets were placed over the rotors in case users go
in direct contact with the drone. The prototype is compatible with
both external power supplies and commonly used aircraft-mounted
batteries.

8www.espressif.com/en/products/hardware/esp32/overview - last access 2019-10-10
9www.mateksys.com/?portfolio=f405-ctr - last access 2019-10-10
10https://betaflight.com/ - last access 2019-10-10

4 EVALUATION
We evaluate DronOS regarding its usability with the three afore-
mentioned drone routing programming modes Unity Scripting, Vive
Scripting, and Vive Realtime (see Figure 5). We elaborate the study
details in the following.

4.1 Methodology
We employ a within-subject design that considers the programming
mode as the only independent variable. Each participant had to
program three routes of six waypoints and the same difficulty in a
dedicated room with each modality. This results in a total number
of nine drone programming trials per participant. The interaction
area of the drone routes was 3× 3 meters. We counterbalanced the
sequence of modalities and tasks for the participants to preclude
training effects. Before starting with each programming modality,
participants were made familiar with the respective condition.

We measure the Task Completion Time (TCT) for each route
participants programmed and assess the workload via a raw NASA-
TLX questionnaire [14] after each trial. Furthermore, we measure
the Root-Mean-Square-Error (RMSE) between the final position
and the defined drone positions. Past research used the RMSE as a
reliable metric to evaluate the accuracy of flight paths [16, 23]. The
PID-controller values were not changed throughout the experiment
to retrieve comparable results. The duration of the whole study
was around 2 hours per participant, including the time participants
took give informed consent, provide demographic data, and to get
familiar with the different modalities.

4.2 Participants
We evaluated them in a user study with 12 participants with an
average age ofM = 27.3 (SD = 2.9).

Twelve participants (eight male, four female) with an average age
of M = 27.3 (SD = 2.9) years took part in the study. Asking after
the experience with drones revealed that eight participants had no
experience with drones while three participants had moderate and
one participant professional experience with drones.

www.espressif.com/en/products/hardware/esp32/overview
www.mateksys.com/?portfolio=f405-ctr
https://betaflight.com/


MUM 2019, November 26–29, 2019, Pisa, Italy M. Hoppe et al.

4.3 Results
We submit the TCTs, raw NASA-TLX scores, and RMSE errors to a
repeated-measures ANOVA to investigate for statistical differences
within the programming modalities. Post-hoc tests are performed
where significant main effects are found. Effect sizes are reported
using Cohen’s d.

4.3.1 Task Completion Time. We found a statistical significant
main effect between the different programmingmodalities (F (2, 22) =
15.94, p < .001). A Bonferroni post-hoc test revealed a statisti-
cally significant difference on TCT between Unity Scripting and
Vive Scripting (p = .006, d = 1.168) and Vive Realtime (p < .001,
d = 1.667). Averaged in seconds, Unity Scripting required the
most time (M = 1376.2, SD = 91.88), followed by Vive Scripting
(M = 928.1, SD = 89.62) and Vive Realtime (M = 817.3, SD = 56.76).

4.3.2 Subjective Workload. A statistically significant main effect
was found in the raw NASA-TLX scores (F (2, 22) = 14.87, p < .001).
A Bonferroni post-hoc test revealed a significant effect between
Unity Scripting and Vive Realtime (p = 0.01, d = −1.075) as well as
Vive Realtime and Vive Scripting (p < 0.001, d = 1.967). Thereby,
Vive Scripting elicited the least workload (M = 31.25, SD = 8.9),
followed by Unity Scripting (M = 39.42, SD = 19.59) and Vive
Realtime (M = 55.1, SD = 13.95).

4.3.3 Root-Mean-Square-Error. Applying an ANOVA to the RMSE
does not result in a statistical significant main effect (p > .05).
Averaged in centimeters and along the three axes X, Y, and Z,
Unity Scripting yielded a higher accuracy (M = 12.27, SD = 1.33)
compared to Vive Scripting (M = 12.47, SD = 1.48) and Vive
Realtime (M = 13.4, SD = 1.44).

5 DISCUSSION
We conducted a study to evaluate the usability of DronOS. We
discuss the implications of our results and potential requirements
for future drone programming frameworks.

5.1 The Right Modality for the Right Job
While all of our participants, regardless of their expertise, were able
to define the given flying routes, significant differences in TCTs and
subjectively perceived workload were found for different program-
ming modalities. If time is a critical factor that should be minimised,
a real-time programming modality should be used, similar to our
implementation of the Vive Realtime programming mode. However,
this comes at the cost of subjective workload as indicated by in-
creased NASA-TLX scores as well as the need for a human operator.
In contrast, if workload should be minimized, a drone framework
should offer a programming-by-demonstration approach similar to
Vive Scripting. While our results approve that Vive Scripting elicits
the least workload, it requires more time compared to Vive Real-
time. Finally, although not statistically significant, Unity Scripting
reveals a slightly higher accuracy compared to Vive Scripting and
Vive Realtime. The future design of drone frameworks can optimize
the respective programming modality that should optimize time,
workload, or accuracy.

5.2 Technical Design for HDI
We present an exemplary design of a drone for HDI research.
Based on past experiences in drone research, difficulties arise when
programming drones to follow a specific behaviour. Furthermore,
safety-related features need to be embedded on the drone to achieve
a high user affordance. The presented framework, controller soft-
ware, and drone were designed to follow security standards and
allow the extension of the framework with minimal knowledge in
programming. DronOS uses a radio controller protocol to commu-
nicate commands with the drone. We have chosen a radio controller
since it provides a more reliable connection compared to Bluetooth
which is incorporated in many commercially available devices [29].

6 LIMITATIONS
We are aware that our study is prone to certain limitations. The
assessment of the drone expertise is subjective and might have been
reported different by each participant. Furthermore, participants
who were proficient with the HTC Vive setup could have achieved
better performance compared to non-proficient users. Through the
micro-vibrations of the drone, the tracker could temporally lose
its tracking connection to the HTC Lighthouse tracking system. A
potential solution might be the incorporation of multiple trackers.
However, the evaluation of tracking efficiency was not the scope
of the presented study.

7 CONCLUSION AND FUTUREWORK
In this work, we present DronOS, a Unity-based prototyping frame-
work that enables us to automatise drone routines. DronOS pro-
vides an interface to define routines, such as movements between
user-defined points and dwell times. We present the system ar-
chitecture as well as communication between our framework and
drone. Thereby, we use standardised radio control protocols for
communication. This is complemented by evaluating the usabil-
ity of the framework using three exemplary programming modes:
Unity Scripting, Vive Scripting, and Vive Realtime. We find that all
participants were able to successfully define the given drone rou-
tines with all programming modalities. However, our study reveals
a trade-off in terms of task completion time, workload, and accuracy
for each modality. We discuss, which of the programming modali-
ties are recommended for the respective critical factor. Furthermore,
we elaborate on drone control design for Human-Drone Interac-
tion. Overall, we envision DronOS as a tool for rapid prototyping
which can be used by researchers and users to evaluate novel drone
interfaces.

In future work, we plan to investigate multimodal programming
of the presented drone routing mechanisms. For example, a combi-
nation of Vive Scripting with Vive Realtime can be used to correct
predefined paths in real-time. Furthermore, we envision DronOS as
a community-driven open-source framework. To foster the devel-
opment and research in this direction, we publish the software of
DronOS, the flight controller, documentation, and the 3D printable
files of the drone, as well as the Vive tracker, mount on a publicly
available repository11.

11www.github.com/HCUM/dronos - last access 2019-10-10

www.github.com/HCUM/dronos


DronOS: A Flexible Open-Source Prototyping Framework for Interactive Drone Routines MUM 2019, November 26–29, 2019, Pisa, Italy

REFERENCES
[1] Muhammad Abdullah, Minji Kim, Waseem Hassan, Yoshihiro Kuroda, and

Seokhee Jeon. 2017. HapticDrone: An Encountered-Type Kinesthetic Haptic
Interface with Controllable Force Feedback: Initial Example for 1D Haptic Feed-
back. In Adjunct Publication of the 30th Annual ACM Symposium on User Inter-
face Software and Technology (UIST ’17). ACM, New York, NY, USA, 115–117.
https://doi.org/10.1145/3131785.3131821

[2] M. Abdullah, M. Kim, W. Hassan, Y. Kuroda, and S. Jeon. 2018. HapticDrone: An
encountered-type kinesthetic haptic interface with controllable force feedback:
Example of stiffness and weight rendering. In 2018 IEEE Haptics Symposium
(HAPTICS). 334–339. https://doi.org/10.1109/HAPTICS.2018.8357197

[3] Parastoo Abtahi, Benoit Landry, Jackie (Junrui) Yang, Marco Pavone, Sean Follmer,
and James A. Landay. 2019. Beyond The Force: Using Quadcopters to Appropriate
Objects and the Environment for Haptics in Virtual Reality. In Proceedings of the
2019 CHI Conference on Human Factors in Computing Systems (CHI ’19). ACM, New
York, NY, USA, Article 359, 13 pages. https://doi.org/10.1145/3290605.3300589

[4] Parastoo Abtahi, David Y. Zhao, Jane L. E., and James A. Landay. 2017. Drone
Near Me: Exploring Touch-Based Human-Drone Interaction. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol. 1, 3, Article 34 (Sept. 2017), 8 pages. https:
//doi.org/10.1145/3130899

[5] Majed Al Zayer, Sam Tregillus, Jiwan Bhandari, Dave Feil-Seifer, and Eelke
Folmer. 2016. Exploring the Use of a Drone to Guide Blind Runners. In Pro-
ceedings of the 18th International ACM SIGACCESS Conference on Computers
and Accessibility (ASSETS ’16). ACM, New York, NY, USA, 263–264. https:
//doi.org/10.1145/2982142.2982204

[6] Mauro Avila, Markus Funk, and Niels Henze. 2015. DroneNavigator: Using Drones
for Navigating Visually Impaired Persons. In Proceedings of the 17th International
ACM SIGACCESS Conference on Computers &#38; Accessibility (ASSETS ’15). ACM,
New York, NY, USA, 327–328. https://doi.org/10.1145/2700648.2811362

[7] Mauro Avila Soto, Markus Funk, Matthias Hoppe, Robin Boldt, Katrin Wolf, and
Niels Henze. 2017. DroneNavigator: Using Leashed and Free-Floating Quad-
copters to Navigate Visually Impaired Travelers. In Proceedings of the 19th Inter-
national ACM SIGACCESS Conference on Computers and Accessibility (ASSETS ’17).
ACM, New York, NY, USA, 300–304. https://doi.org/10.1145/3132525.3132556

[8] Anke M. Brock, Julia Chatain, Michelle Park, Tommy Fang, Martin Hachet,
James A. Landay, and Jessica R. Cauchard. 2018. FlyMap: Interacting with Maps
Projected from a Drone. In Proceedings of the 7th ACM International Symposium
on Pervasive Displays (PerDis ’18). ACM, New York, NY, USA, Article 13, 9 pages.
https://doi.org/10.1145/3205873.3205877

[9] J. R. Cauchard, A. Tamkin, C. Y. Wang, L. Vink, M. Park, T. Fang, and J. A. Landay.
2019. Drone.io: A Gestural and Visual Interface for Human-Drone Interaction. In
2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI).
153–162. https://doi.org/10.1109/HRI.2019.8673011

[10] Jane L. E, Ilene L. E, James A. Landay, and Jessica R. Cauchard. 2017. Drone &#38;
Wo: Cultural Influences on Human-Drone Interaction Techniques. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems (CHI ’17).
ACM, New York, NY, USA, 6794–6799. https://doi.org/10.1145/3025453.3025755

[11] Markus Funk. 2018. Human-drone interaction: let’s get ready for flying user
interfaces! Interactions 25, 3 (2018), 78–81.

[12] Antonio Gomes, Calvin Rubens, Sean Braley, and Roel Vertegaal. 2016. Bit-
Drones: Towards Using 3D Nanocopter Displays As Interactive Self-Levitating
Programmable Matter. In Proceedings of the 2016 CHI Conference on Human
Factors in Computing Systems (CHI ’16). ACM, New York, NY, USA, 770–780.
https://doi.org/10.1145/2858036.2858519

[13] M. R. Haque, M. Muhammad, D. Swarnaker, and M. Arifuzzaman. 2014. Au-
tonomous quadcopter for product home delivery. In 2014 International Confer-
ence on Electrical Engineering and Information Communication Technology. 1–5.
https://doi.org/10.1109/ICEEICT.2014.6919154

[14] Sandra G. Hart and Lowell E. Staveland. 1988. Development of NASA-TLX (Task
Load Index): Results of Empirical and Theoretical Research. In Human Mental
Workload, Peter A. Hancock and Najmedin Meshkati (Eds.). Advances in Psychol-
ogy, Vol. 52. North-Holland, 139 – 183. https://doi.org/10.1016/S0166-4115(08)
62386-9

[15] Seongkook Heo, Christina Chung, Geehyuk Lee, and Daniel Wigdor. 2018. Thor’s
hammer: An ungrounded force feedback device utilizing propeller-induced
propulsive force. In Proceedings of the 2018 CHI Conference on Human Factors in

Computing Systems. ACM, 525.
[16] Gabriel Hoffmann, Steven Waslander, and Claire Tomlin. [n. d.]. Quadrotor

Helicopter Trajectory Tracking Control. https://doi.org/10.2514/6.2008-7410
arXiv:https://arc.aiaa.org/doi/pdf/10.2514/6.2008-7410

[17] Matthias Hoppe, Pascal Knierim, Thomas Kosch, Markus Funk, Lauren Futami,
Stefan Schneegass, Niels Henze, Albrecht Schmidt, and Tonja Machulla. 2018.
VRHapticDrones: Providing Haptics in Virtual Reality Through Quadcopters.
In Proceedings of the 17th International Conference on Mobile and Ubiquitous
Multimedia (MUM 2018). ACM, New York, NY, USA, 7–18. https://doi.org/10.
1145/3282894.3282898

[18] Matthias Hoppe, Thomas Kosch, Pascal Knierim, Markus Funk, and Albrecht
Schmidt. 2019. Are Drones Ready for Takeoff? Reflecting on Challenges and
Opportunities in Human-Drone Interfaces.

[19] Pascal Knierim, Thomas Kosch, Alexander Achberger, and Markus Funk. 2018.
Flyables: Exploring 3D Interaction Spaces for Levitating Tangibles. In Proceedings
of the Twelfth International Conference on Tangible, Embedded, and Embodied
Interaction (TEI ’18). ACM, New York, NY, USA, 329–336. https://doi.org/10.1145/
3173225.3173273

[20] Pascal Knierim, Thomas Kosch, Valentin Schwind, Markus Funk, Francisco Kiss,
Stefan Schneegass, and Niels Henze. 2017. Tactile Drones - Providing Immersive
Tactile Feedback in Virtual Reality Through Quadcopters. In Proceedings of the
2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems
(CHI EA ’17). ACM, NewYork, NY, USA, 433–436. https://doi.org/10.1145/3027063.
3050426

[21] Thomas Kosch, Markus Funk, Daniel Vietz, Marc Weise, Tamara Müller, and
Albrecht Schmidt. 2018. DroneCTRL: A Tangible Remote Input Control for
Quadcopters. In The 31st Annual ACM Symposium on User Interface Software and
Technology Adjunct Proceedings (UIST ’18 Adjunct). ACM, New York, NY, USA,
120–122. https://doi.org/10.1145/3266037.3266121

[22] Ziquan Lan, Mohit Shridhar, David Hsu, and Shengdong Zhao. 2017. XPose:
Reinventing User Interaction with Flying Cameras.. In Robotics: Science and
Systems.

[23] Carlos Luis and Jérôme Le Ny. 2016. Design of a trajectory tracking controller
for a nanoquadcopter. arXiv preprint arXiv:1608.05786 (2016).

[24] Sven Mayer, Pascal Knierim, PW Wozniak, and Markus Funk. 2017. How drones
can support backcountry activities. In Proceedings of the 2017 natureCHI workshop,
in conjunction with ACM mobileHCI, Vol. 17. 6.

[25] Sven Mayer, Lars Lischke, and Pawel W. Woźniak. 2019. Drones for Search
and Rescue. In 1st International Workshop on Human-Drone Interaction. Ecole
Nationale de l’Aviation Civile [ENAC], Glasgow, United Kingdom. https://hal.
archives-ouvertes.fr/hal-02128385

[26] Gregory S McNeal. 2014. Drones and aerial surveillance: Considerations for
legislators. Brookings Institution: The Robots Are Coming: The Project on Civilian
Robotics (2014).

[27] T motor f40 iii 2306 2600kv. 2019. racedayquads. www.
racedayquads.com/collections/multigp-spec-racing-class/products/
t-motor-f40-iii-2306-2400kv-v3

[28] Calvin Rubens, Sean Braley, Antonio Gomes, Daniel Goc, Xujing Zhang,
Juan Pablo Carrascal, and Roel Vertegaal. 2015. Bitdrones: Towards levitat-
ing programmable matter using interactive 3d quadcopter displays. In Adjunct
Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. ACM, 57–58.

[29] Rahul C. Shah, Lama Nachman, and Chieh-yih Wan. 2008. On the Performance
of Bluetooth and IEEE 802.15.4 Radios in a Body Area Network. In Proceedings of
the ICST 3rd International Conference on Body Area Networks (BodyNets ’08). ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), ICST, Brussels, Belgium, Belgium, Article 25, 9 pages. http://dl.
acm.org/citation.cfm?id=1460257.1460291

[30] E. Vattapparamban, ÛI. Güvenç, A. ÛI. Yurekli, K. Akkaya, and S. Uluaǧaç. 2016.
Drones for smart cities: Issues in cybersecurity, privacy, and public safety. In
2016 International Wireless Communications and Mobile Computing Conference
(IWCMC). 216–221. https://doi.org/10.1109/IWCMC.2016.7577060

[31] A. Wojciechowska, J. Frey, S. Sass, R. Shafir, and J. R. Cauchard. 2019. Collocated
Human-Drone Interaction: Methodology and Approach Strategy. In 2019 14th
ACM/IEEE International Conference on Human-Robot Interaction (HRI). 172–181.
https://doi.org/10.1109/HRI.2019.8673127

https://doi.org/10.1145/3131785.3131821
https://doi.org/10.1109/HAPTICS.2018.8357197
https://doi.org/10.1145/3290605.3300589
https://doi.org/10.1145/3130899
https://doi.org/10.1145/3130899
https://doi.org/10.1145/2982142.2982204
https://doi.org/10.1145/2982142.2982204
https://doi.org/10.1145/2700648.2811362
https://doi.org/10.1145/3132525.3132556
https://doi.org/10.1145/3205873.3205877
https://doi.org/10.1109/HRI.2019.8673011
https://doi.org/10.1145/3025453.3025755
https://doi.org/10.1145/2858036.2858519
https://doi.org/10.1109/ICEEICT.2014.6919154
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.1016/S0166-4115(08)62386-9
https://doi.org/10.2514/6.2008-7410
http://arxiv.org/abs/https://arc.aiaa.org/doi/pdf/10.2514/6.2008-7410
https://doi.org/10.1145/3282894.3282898
https://doi.org/10.1145/3282894.3282898
https://doi.org/10.1145/3173225.3173273
https://doi.org/10.1145/3173225.3173273
https://doi.org/10.1145/3027063.3050426
https://doi.org/10.1145/3027063.3050426
https://doi.org/10.1145/3266037.3266121
https://hal.archives-ouvertes.fr/hal-02128385
https://hal.archives-ouvertes.fr/hal-02128385
www.racedayquads.com/collections/multigp-spec-racing-class/products/t-motor-f40-iii-2306-2400kv-v3
www.racedayquads.com/collections/multigp-spec-racing-class/products/t-motor-f40-iii-2306-2400kv-v3
www.racedayquads.com/collections/multigp-spec-racing-class/products/t-motor-f40-iii-2306-2400kv-v3
http://dl.acm.org/citation.cfm?id=1460257.1460291
http://dl.acm.org/citation.cfm?id=1460257.1460291
https://doi.org/10.1109/IWCMC.2016.7577060
https://doi.org/10.1109/HRI.2019.8673127

	Abstract
	1 Introduction
	2 Related Work
	3 DronOS: A Drone Navigation Framework
	3.1 Concept
	3.2 Tracking
	3.3 Unity
	3.4 PID Controller
	3.5 Communication
	3.6 Drone Hardware

	4 Evaluation
	4.1 Methodology
	4.2 Participants
	4.3 Results

	5 Discussion
	5.1 The Right Modality for the Right Job
	5.2 Technical Design for HDI

	6 Limitations
	7 Conclusion and Future Work
	References

