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Fig. 1. We utilize pupil dilation measurements in virtual reality to assess the perceived mental workload
levels while reading with rapid serial visual presentations. We assess how different presentation speeds affect
pupil diameter and present an adaptive reading system that adjusts the presentation speed automatically.
Part of this teaser figure was generated with Fooocus.

Rapid Serial Visual Presentation (RSVP) improves the reading speed for optimizing the user’s information
processing capabilities on Virtual Reality (VR) devices. Yet, the user’s RSVP reading performance changes
over time while the reading speed remains static. In this paper, we evaluate pupil dilation as a physiological
metric to assess the mental workload of readers in real-time. We assess mental workload under different
background lighting and RSVP presentation speeds to estimate the optimal color that discriminates the pupil
diameter varying RSVP presentation speeds. We discovered that a gray background provides the best contrast
for reading at various presentation speeds. Then, we conducted a second study to evaluate the classification
accuracy of mental workload for different presentation speeds. We find that pupil dilation relates to mental
workload when reading with RSVP. We discuss how pupil dilation can be used to adapt the RSVP speed in
future VR applications to optimize information intake.
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1 Introduction
The widespread adoption of wearable mobile computing has created a pressing challenge to ef-
fectively deliver text on displays with limited screen real estate. Rapid Serial Visual Presentation
(RSVP) has emerged as a popular solution to read text on mobile devices, allowing users to fixate
on text on the display center. Words are presented sequentially at a user-defined frequency [23],
making full-text presentations possible on various wearable devices. RSVP eliminates the need for
eye movements and enables faster reading speeds, offering significant time-saving advantages [45].
Consequently, users can read full texts on smartphones [29, 55], smartwatches [18, 67], and aug-
mented [67] or Virtual Reality (VR) [66]. Furthermore, the presentation speed determines how
fast a reader can read the displayed text. However, changing the presentation speed impacts the
reading demand and text comprehension [45]. Consequently, low presentation speeds can lead to
improved text comprehension at the cost of time. In contrast, high presentation speeds decrease
text comprehension while increasing time savings. Hence, the optimal presentation speed between
processing capabilities and presentation speed can maintain text comprehension while maximizing
time savings.
Using RSVP to improve the reading performance on mobile devices was subject to previous

research. For example, Dingler et al. [19] enhanced reading efficiency on electronic devices by
introducing stimuli that guide users’ eye movements to increase reading speed. The study found that
such stimuli can effectively increase the reading speed to 150% of the normal rate while maintaining
nearly stable comprehension rates, with initial mental load strain decreasing significantly over
time. Consequently, RSVP has been successfully used on mobile general-purpose devices [18, 66].
Concerning reading in VR, Gabel et al. [27] compared continuous and discrete user interface panels
for displaying and interacting with long texts in VR. The study found no significant differences
in reading performance across different text panel variants, but it did identify significant effects
on certain aspects of user experience. Although long texts provide an overview of the text, we
hypothesize that using RSVP in VR allows text to be displayed closer to the user for increasing
readability. However, the challenge of adapting the RSVP presentation speed to the user’s mental
capacities remains.
Presentation speeds require continuous calibrations to match the user’s presentation speed

preferences and change the speed with prolonged reading times that may deteriorate the reading
performance [45]. Yet, manual presentation speed adjustments disturb the reading flow, asking
for adaptive reading flow adjustments and thus increasing the user reading efficiency. Hence, past
research recommended presentation speed adaptations, for example, by analyzing mental processes
in real-time and adjusting the presentation speed in-situ [1].

To overcome this challenge, we explore pupil dilation to infer mental workload for automatically
adjusting RSVP reading speeds. In this context, pupil dilation has been used to measure mental
workload in psychology [34] and Human-Computer Interaction (HCI) [44, 57]. Since pupil dilation
is susceptible to changing lighting conditions, previous work investigated how pupil dilation can
be modeled in light-changing environments [20, 57]. Such predictive models are suitable for VR
environments where lighting conditions can be controlled.
Inspired by previous work, we conducted two user studies to understand pupil changes for

different background lighting and evaluate the classification accuracy for different reading speeds
based on pupil diameter (see Figure 1). The first study reveals that a gray background maximizes
the discrimination of pupil diameter when reading with different reading speeds. The second study
shows an increasing linear trend for the pupil diameter with increasing reading speeds. We discuss
our results and the use of pupil dilation to adapt the reading speed in VR applications.
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2 Related Work
The following section iterates previous research on RSVP, how different RSVP parameters influence
mental workload, and how mental workload can be sensed using pupil dilation.

2.1 Reading with RSVP
Words are sequentially displayed one at a time in a fixated spatial arrangement when reading with
RSVP. This process entails updating the currently displayed word at a predefined frequency, follow-
ing a single-word-at-a-time approach [30]. RSVP enhances the reading speed by presenting words
continuously within the same visual field, thereby minimizing time-consuming eye movements by
jumping from word to word while improving the reading concentration [60]. Lengthy text can be
displayed legibly on devices with small screen space or in VR, where the text can be brought closer
to the user on a word-by-word basis to circumvent the limitations given by the screen resolution
and text distance placement.
RSVP enhances the overall reading velocity by presenting words within a consistent area of

vision, eliminating the need for time-consuming eye movements when transitioning from one word
to another [36, 61]. For example, studies by Rubin and Turano [64] compared reading speeds and
comprehension levels between conventional single-page reading and calibrated RSVP techniques.
Their research indicates that RSVP can accelerate reading without compromising understanding
compared to regular reading. However, this strategy depends on a calibration process where users
read aloud, and researchers or users must manually adjust the RSVP speed based on the accuracy
of the reading.

Given its single-word presentations, RSVP overcomes space limitations associated with display
devices with restricted screen space, allowing for the display of longer texts. Furthermore, single
words can be moved closer to the user to enhance readability. Examples of this are the successful
implementation of RSVP on devices such as mobile phones [46, 70], smartwatches [17], and mobile
augmented reality devices [67]. Yet, the requirements for RSVP design may vary depending on
the device and the user’s mental capacity at the time of use [37]. Users may favor slower word
presentation speeds in the later hours when they are already mentally exhausted during prolonged
reading sessions.

2.2 RSVP Parameter Design
Building upon the RSVP concept, the specific designs of RSVP parameters enhance the overall
reading experience. As a method of presenting single words or short phrases sequentially, RSVP
eliminates the need for eye movements and allows for precise control over the rate at which readers
access textual information. Previous research has focused on identifying key factors that optimize
reading performance in RSVP, namely text alignment and presentation speed, were explored in
previous work [45]. In their study, the authors investigate different RSVP parameters and their
impact on the user’s perceived workload by using subjective (e.g., the NASA-TLX questionnaire [32,
33]) and objective measures (e.g., Electroencephalography (EEG) [24, 25]).
Text alignment, often called the centering of text, influences the reader’s fixation location and

howwords or phrases are presented. An optimal text alignment ensures that the displayed content is
fixated without requiring unnecessary eye movements. Previous studies have investigated different
ways of implementing this. Some commercial RSVP implementations, such as Spritz Inc.1, employ
an Optimal Recognition Position (ORP) to reduce the saccades and minimize eye movements.
However, prolonged use of ORPs can lead to reduced parafoveal processing, increased perceived
workload (i.e., working memory [3]), and a higher frequency of blinks, indicating visual fatigue

1https://spritz.com/ – last accessed 2024-07-29
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[5]. Dingler et al. [19] explored alternative ORP representations, such as underlining instead of
coloring them, and assessed their impact on perceived workload and text comprehension. Although
no significant differences were found between underlined and colored ORPs regarding workload
and text comprehension, participants reported quicker adaptation to colored ORPs. Following this,
Kosch et al. [45] explored the combination of ORP and color and found no significant difference in
perceived workload and alpha and theta power in their EEG signal. Their results show that the
ORP is not a decisive factor influencing the perceived mental workload.
Another parameter in RSVP design is presentation speed, which determines the rate at which

words are displayed. A faster presentation speed can reduce the time required to read a document.
However, it comes at the cost of reduced cognitive processing time for each word. Previous work
has shown a negative correlation between text comprehension and presentation speed [45, 65].
While text alignment showed no significant difference in various studies looking at perceived
workload and measured mental workload, presentation speed does have a substantial effect on
perceived workload and measured mental workload.

2.3 Sensing Mental Workload By Pupil Dilation
Estimating mental workload through eye tracking is a valuable and insightful approach in various
fields, such as HCI, aviation, and cognitive psychology. Using eye tracking to monitor a person’s
eye movements and gaze patterns, researchers can gain insights into their cognitive processes
and the demands on their visual attention. This method allows for evaluating mental workload in
real-time, making it particularly advantageous for applications where task performance, safety, or
user experience is of concern. Eye tracking can provide metrics, such as fixation duration, saccade
frequency, and pupillary response, to gauge mental workload [4, 15, 57]. Pupil dilation serves as
another indicator that studies have shown to be consistently associated with task difficulty, a concept
established by the work of Hess and Polt [34]. Consequently, pupil dilation has been proposed
as a near-real-time metric for measuring mental workload, effectively using mental workload in
adaptive mixed reality interfaces [50]. In high mental workload tasks, the mean and standard
deviation of the pupil diameter increase in response to the heightened visual processing [6, 54].
While more advanced pupil-based metrics have been proposed to measure mental workload, such as
the index of pupillary activity [7, 20], it is crucial to acknowledge that environmental factors, such
as scene colors, brightness, and movement, can influence pupil dilation, which could complicate its
interpretation [35, 56].

2.4 Mental Workload and Task Performance in VR
Mental workload in VR mirrors the role of working memory in cognitive tasks. In VR, visual
distractions and mental demands can significantly affect task performance, leading to increased
response times, discomfort, physiological arousal, and cognitive overload [49, 52, 58]. Conversely,
an excessively automated and low-fidelity VR environment causes user disengagement. Thus, HCI
researchers must balance cognitive engagement and task demand [63]. As tasks become more
challenging and success less certain, user effort decreases, and perceived workload rises, potentially
resulting in impaired performance, increased perceived workload, and reduced engagement.
Understanding the physiological aspect of mental workload is important to understand the

impact on user experience in VR. Electrodermal Activity (EDA) recordings can offer insights into
task engagement, with higher skin conductance levels associated with reduced engagement and
heightened stress demanding tasks [21]. Another example is the work from Chiossi et al. [11],
where they created a physiologically adaptive system that improves task performance and perceived
workload. Additionally, the use of EEG [10, 12, 24] has been used for adapting user interfaces based
on mental workload. Yet, these methods require sensors that make skin contact with the user and
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Fig. 2. Relative pupil dilation values of the first experiment for each condition and background color. We
established a resting baseline prior before the reading conditions of the first experiment started to obtain the
relative pupil diameter for the subsequent conditions (i.e., static baseline reading, 200 WPM, 350 WPM, and
500 WPM).

impair usability. Therefore, previous research investigated contactless methods to infer mental
workload.

Consequently, pupil dilation has been exploited as a metric for mental workload. Previous work
showed that the pupil can be robustly sensed using eye tracking [26] to infer the degree of perceived
mental workload [41]. VR glasses especially benefit from using pupil dilation as a metric for mental
workload in VR [51, 62]. We hypothesize that pupil dilation is a metric to automatically adjust the
RSVP presentation speed based on the measured mental workload in real-time.

2.5 Summary
Previous work showed that RSVP is suitable for reading text in limited spaces. However, different
presentation speeds elicit different levels of mental workload [45, 65], especially when reading for
extended periods, forcing users to set their preferred presentation speed constantly to maximize
the information processing throughput. At the same time, mental workload can be classified using
pupil dilation and eye movement measures [7, 20, 34, 41, 42] by integrating eye tracking into VR
headsets [51, 62]. Motivated by improving reading in VR environments using adaptive RSVP, we
investigate how pupil dilation can indicate mental workload to adjust the presentation speed. We
conducted two user studies in VR: (1) we investigated how different background lightings affect
pupil diameter under different presentation speeds in a prestudy. (2) In a second study, we evaluate
how fine-grained presentation speed levels influence pupil diameter using suitable background
lighting from the prestudy. Finally, we discuss how our findings can be used to build adaptive RSVP
applications that set the presentation speed automatically based on the perceived workload.

3 General Experiment Setup
We cover the description for the following two user studies, in which the experimental apparatus
and materials were consistent throughout both experiments.

3.1 Apparatus and Materials
All studies were conducted using the HTC Vive Pro Eye Headset2, which features 1440× 1600 pixels
per eye and tracks eye movement at 120 Hz. The interpupillary distance was calibrated for each
participant. The VR reading tasks were implemented in Unity Version 2021.3.25f1 and executed on

2https://www.vive.com/us/product/vive-pro-eye/specs – last accessed 2024-07-29
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a PC with Windows 10, an Intel Core i7 10700k at 3.80 GHz, 32 GB RAM, and an Nvidia Geforce
3070Ti. The text was presented in font size 36 and placed 60 centimeters away from the viewer in
the Space Mono Regular font. All texts, the code of the prototype, and analysis scripts are made
publicly available3.

3.2 Procedure
Upon arrival, the participants were greeted with a verbal outline of the study regarding the
procedure, rationale, and study goals. Afterward, the participants completed an informed consent
form and provided their demographic data. Participants with visual impairments were excluded
from the study. We then made the participants familiar with RSVP using a generic text with the
Spritz-App4 on a mobile phone. After this introduction, the participants were advised to wear the
VR headset. Then, we calibrated the eye tracker before testing the different conditions for the two
experiments. In total, we recruited 26 participants (11 female, 15 male), where the participant’s age
ranged between 17 and 59 (M = 28.2, SD = 11.4). All participants received a compensation of €10. All
participants reported having minimal to no experience with RSVP, and participants self-reported
an average of experience with VR with 2.5 (SD = 1.53)5.

4 Experiment I: Evaluating Background Brightness
In the first experiment, we evaluated how different background levels affect pupil dilation under
different presentation speeds. We explore how the background brightness, in combination with the
presentation speed, influences the pupil diameter.

4.1 Study Design
The study utilized a repeated measures design, incorporating two independent variables: presenta-
tion speed and background brightness. The presentation speeds were 200 WPM, 350 WPM, and 500
WPM based on previous research [45]. For background brightness, three levels were used: black
(#000000) with white text, gray (#7F7F7F) with black text, and white (#FFFFFF) with black text,
resulting in a total of nine RSVP reading trials per participant. The three background brightness
levels cover the brightness between the brightest level (i.e., white), the darkest level (i.e., dark),
and an in-between level (i.e., gray). Additionally, three baseline tasks were included, where partici-
pants read text presented in one block at each background brightness level to establish baseline
measurements for pupil dilation and reading speed. Each participant thus participated in twelve
reading trials. We showed a blank screen for 15 seconds before each trial to avoid bleed-over effects
from previous conditions and give the pupil time to adjust to the light levels. The texts for the
reading conditions were sourced from the work of Hahn et al. [31], each about 130 words long and
written at the level of a sixth grade in German. We evaluate the pupil dilation as the only measure
in experiment I.

4.2 Participants
Seven participants (three male and four female) participated in the experiment. They were recruited
via our university mailing list and snowball system. The participants’ ages ranged between 24
and 59 (M = 36.6, SD = 15.8). All participants received a compensation of €10. All participants
reported having minimal to no experience with RSVP, and participants self-reported an average of
experience with VR with 2.57 (SD = 1.4).

3https://github.com/mimuc/RSVP
4https://spritz.com – last accessed 2024-07-29
5Reported on a scale from 1 to 5, with 1 being no experience, five being used at least once a week.
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(a) Linear Relation per Participant. (b) Mean Linear Relation.

Fig. 3. Pupil Dilation (in millimeter) plotted against the speed in RSVP (words per minute). (a) The lines
represent a linear model plotted through the points per participant. (b) The line represents a linear model
plotted through the data points of all participants. In both (a) and (b), observe a linear relation between
the presentation speed and pupil dilation. However, the linear relation does not always follow a positive
trajectory.

4.3 Data Processing and Results
We statistically analyze the participants’ relative pupil dilation. We measure the mean pupil dilation
during a prior resting condition to determine the individual pupil dilation. Then, the relative pupil
dilation is calculated by subtracting the measured mean pupil dilation values from the mean resting
baseline value. We conducted a Shapiro-Wilk test to test our measures for normality. We adopted an
alpha level of .05 for statistical significance. Post hoc tests were performed between the conditions.
Post hoc pair-wise comparisons to baseline measures derived from static reading were performed
when applicable. We investigated if the relative pupil diameter for the three background colors
originated from a normal distribution. A Shapiro-Wilk test showed no deviation of normality for all
three background colors, 𝑝 > .05. We applied repeated measures ANOVA separately on the relative
pupil diameter measures. We did this separately for each background color to avoid interaction
effects resulting from large changes in pupil diameter through the background color instead of the
presentation speed. Figure 2 shows an overview of pupil dilation in the first experiment.
The black background did not show a significant main effect between the presentation speed

conditions, 𝐹 (1, 20) = 1.40, 𝑝 = .25, 𝜂2𝑝 = 0.07. However, the gray background showed a significant
main effect for the presentation speeds, 𝐹 (1, 20) = 15.41, 𝑝 < .001, 𝜂2𝑝 = 0.44. Bonferroni-corrected
pairwise t-tests between the conditions did not show a significant effect between all conditions,
𝑝 > .05. Finally, the white background showed a significant main effect for the presentation
speeds, 𝐹 (1, 20) = 4.92, 𝑝 = .04, 𝜂2𝑝 = 0.20. Again, Bonferroni-corrected pairwise t-tests between the
conditions did not show a significant effect between all conditions, 𝑝 > .05.

4.4 Discussion
We found that background brightness did not affect pupil dilation in static VR conditions. As
shown in Figure 2, the average relative pupil dilation displayed slight variations across different
presentation speeds. Nonetheless, the gray background exhibited a linear increase in pupil dilation.
Therefore, we used the same gray background for experiment II to examine the impact of various
presentation speeds on pupil dilation. The results indicate that the background brightness does
not significantly influence pupil dilation under static conditions in a VR environment. This finding
suggests that other factors might play a more prominent role in affecting pupil size when the visual
scene is not changing. The marginal differences observed in average relative pupil dilation across
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Fig. 4. Relative Pupil Dilation values for each presentation speed. The participants conducted a resting
baseline before starting with the reading conditions. Afterward, the participants read static text (i.e., baseline)
or the RSVP conditions in a counterbalanced order.

different presentation speeds suggest that the speed at which visual stimuli are presented might
subtly impact pupil response and detection. For example, When a display is bright, the scattering of
light forms a diffuse layer of retinal illumination, which lowers the perceived contrast of the image
and consequently hinders detection performance while overstimulating the eyes [53]. Interestingly,
the gray background showed a linear trend of increasing pupil dilation with increasing presentation
speeds. This linear relationship implies that pupil dilation increases consistently when a gray
background is used as the visual presentation progresses. This could be due to a gray background’s
neutral and non-distracting nature, allowing the eyes to respond more directly to the visual stimuli
without interference from background brightness changes. Thus, we use the same gray background
for experiment II.

5 Experiment II: Main Study
The goal of experiment II is to evaluate changes in pupil dilation under different presentation
speeds in VR.

5.1 Study Design
Again, we use the presentation speed as the only independent variable, employing nine speeds
ranging from 200WPM to 600WPM in 50WPM increments to allow for more gradual data collection.
Ten conditions were tested per participant: one static reading condition for baseline measurements
of each participant’s reading speed and nine RSVP conditions at the specified presentation speeds.
Based on the results of experiment I, all conditions combined a gray background with black text.
The order of conditions was counterbalanced, and texts were randomly assigned for each condition.

We include the pupil dilation as a dependent variable. Furthermore, we use the NASA-TLX [32, 33]
to operationalize the task load and text questionnaires to quantify the reading comprehension
after each condition. Each text stated three text comprehension questions, where we counted the
number of correct answers for each text.

5.2 Apparatus and Materials
The texts for this experiment were sourced from a collection of standardized speed reading passages
by Quinn et al. [59], which were translated into German using ChatGPT. This was followed by
the experimenters’ evaluation of the texts’ plausibility. Each text was about 500 to 550 words long
and was written in a low (German) language level. Instead of one right/wrong question, each text
featured three single-choice questions with four possible answers each to avoid the participants

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. MHCI, Article 284. Publication date: September 2024.



Your Eyes on Speed 284:9

only guessing the answer and still having a 50% success rate. For the static reading condition
(i.e., baseline), a text by Hahn et al. [31] was used again, supplemented with three newly created
single-choice questions.

5.3 Procedure
The procedure for experiment II is similar as described in Section 3.2. Participants conducted a total
of ten conditions see Section 5.1, starting with the static reading task for baseline measurement,
followed by the nine RSVP conditions.

5.4 Participants
Nineteen participants (seven female and twelve male), aged between 17 and 50 (M = 25.1, SD = 7.8),
were recruited for the study. All participants were recruited via the mailing list for the study and
snowball system. All participants received a compensation of €10 for participating. All participants
reported having minimal to no experience with RSVP and self-reported a mean of experience with
VR of 2.47 (SD = 1.6). All participants had to either have normal or corrected to normal vision with
contacts, as no glasses could be worn under the VR headset to prevent problems with eye-tracking.
Those with corrected to normal vision wore contacts. Additionally, all participants had to be native
German speakers, so there would be no effect on the measurements because of varying language
skills.

5.5 Data Processing and Results
We conduct a statistical analysis of the participants’ relative pupil dilation. First, we measure the
average pupil dilation during an initial resting state to establish a baseline for each individual.
Then, we calculate the relative pupil dilation by subtracting the observed dilation values from the
mean resting baseline value. The RSVP test conditions gave each participant three measurements
(pupil dilation, task load, and text comprehension). We conducted a Shapiro-Wilk test to test the
measure for normality. We adopted an alpha level of .05 for statistical significance. Post hoc tests
were performed between the conditions. Post hoc pair-wise comparisons to baseline measures
derived from static reading were performed when applicable.

5.5.1 Pupil Dilation. A Shapiro-Wilk test revealed a deviation from normality in our measures,
𝑝 < .05. A Friedman test did not reveal a significant main effect, 𝜒2 (9, 𝑁 = 19) = 10.2, 𝑝 = .332. The
effect size was calculated using Kendall’s W, which was .06, indicating a small effect size. Figure 4
shows the relative pupil diameter differences.

5.5.2 Task Load. A Shapiro-Wilk test revealed a deviation from normality in our measures, 𝑝 < .05.
A Friedman test revealed a significant main effect, 𝜒2 (9, 𝑁 = 19) = 100.00, 𝑝 < .001. Kendall’s W
denotes a value of .59, indicating a large effect size. Pairwise Bonferroni-corrected Wilcoxon signed
rank post hoc tests revealed significant effects between the subjective task load scores (see Table 1
and Figure 5a).

5.5.3 Text Comprehension. A Shapiro-Wilk test revealed a deviation from normality in our mea-
sures, 𝑝 < .05. A Friedman test revealed a significant main effect, 𝜒2 (9, 𝑁 = 19) = 17.8, 𝑝 = .038.
Kendall’s W denotes a value of .10, indicating a small effect size. However, pairwise Bonferroni-
corrected Wilcoxon signed-rank post hoc tests did not reveal a significant effect between the pairs.
Figure 5b shows the averaged comprehension scores.

5.5.4 Bayesian Analysis of Pupil Dilation. We adopt a Bayesian approach for data analysis of pupil
dilation, specifically employing Bayesian linear mixed models (BLMM). This approach recently
gained traction [38, 47, 68] and offers several advantages over inference statistics. One of these
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Table 1. p-values from the Bonferroni-corrected
pairwise post hoc Wilcoxon signed-rank tests for
the raw NASA-TLX scores. The effect size 𝑟 de-
notes the rank-biserial correlation.

Pair p-value 𝑟

600 WPM 350 WPM 𝑝 <.001 .571

550 WPM

350 WPM 𝑝 <.001 .538
300 WPM 𝑝 <.001 .602
250 WPM 𝑝 <.001 .583
200 WPM 𝑝 <.001 .638

500 WPM
300 WPM 𝑝 <.001 .462
250 WPM 𝑝 <.001 .450
200 WPM 𝑝 <.001 .524

450 WPM 200 WPM 𝑝 =.009 .469

Baseline

600 WPM 𝑝 <.001 .711
550 WPM 𝑝 <.001 .744
500 WPM 𝑝 <.001 .657
450 WPM 𝑝 =.002 .588
400 WPM 𝑝 =.019 .502

Table 2. Bayesian statistics results of the pri-
ors for pupil dilation. All results are contrasted
against the whole dataset. We report the High-
Density Interval (HDI) with a 95% credible inter-
val.

Pupil Dilation
Speed 𝑝𝑏 𝑀𝑒𝑑. 𝐻𝐷𝐼95%

200 <.001 0.09 [0.00, 0.27]
250 <.001 0.09 [0.00, 0.27]
300 <.001 0.10 [0.00, 0.29]
350 <.001 0.14 [0.00, 0.33]
400 <.001 0.14 [0.00, 0.34]
450 <.001 0.12 [0.00, 0.31]
500 <.001 0.17 [0.00, 0.37]
550 <.001 0.16 [0.00, 0.36]
600 <.001 0.21 [0.00, 0.42]
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Fig. 5. (a) Perceived task load for all participants. (b) Number of correct answers to the comprehension
questionnaires provided by the participants.

advantages, as presented by Kay et al. [39], is the incorporation of prior knowledge from eye-
tracking data. Additionally, Bayesian statistics allows for effect estimation in small sample sizes. It
will enable readers to evaluate effect size, including those close to zero, rather than determining
the presence or absence of effects. Consequently, we utilize Bayesian parameter estimation to
estimate effect sizes and quantify the uncertainty surrounding those estimations by leveraging the
information in our data and the applied prior knowledge. For all our models, we use the package,
brms to compute 4 Hamilton-Monte-Carlo chains with 40.000 iterations each and 10% warm-up
samples. All Rubin-Gelman [28] statistics are well below 1.1 for effective sample size.
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None of the explored different weakly informative priors affected the statistical inference. As a
result, we chose priors to resemble only weakly informative priors when standardizing with a prior
on a normal distribution of the data (𝑀 = 4, 𝑆𝐷 = 2) without allowing for negative numbers (𝑙𝑏 = 0).
Additionally, we accounted for the potential variability across participants by incorporating a
random factor on the participant parameter. This approach acknowledges that different participants
may exhibit varying characteristics and baselines and allows for more nuanced modeling. By
explicitly modeling the participant-specific effect, we capture the heterogeneity and better account
for the underlying structure of the data.

Effects were considered meaningful when a particularly low probability (𝑝𝑏 <= 2.5) of the effect
being zero or the opposite. We calculated 𝑝𝑏 through the relative proportion of posterior samples
being zero or opposite to the median. This metric has similar properties to the classical p-value and
is an accepted substitution cf. [40, 48, 68]. Still, it quantifies the proportion of probability that the
effect is zero or the opposite, given the data observed. Note that this is the reverse of the classical
approach to inferential statistics, where one measures data probability given the test statistic’s null
hypothesis. In addition to the median of the parameter, we calculated the High-Density Interval
(HDI) at 95% of the posterior distribution for all parameters, which indicates the possible range of
effects given the data alongside the median of the respective parameter. Simple mean comparisons
were made on standardized outcome variables. Therefore, all 𝑏 represent an effect size in standard
deviations from the mean (corresponding to Cohen’s d for simple effects of categorical predictors
with two levels). We found that all variations of presentation speed had a distinguishable effect on
pupil dilation (see Table 2).

6 Discussion
We conducted a user study using eye tracking to investigate the impact of presentation speeds
on text comprehension, subjective task load, and pupil dilation. The pilot study investigated the
influence of background color on pupil dilation (see Section 4), indicating a linear trend with a gray
background color. Subsequently, our main study (see Section 5) revealed that increased presentation
speeds significantly increased subjective workload and reduced text comprehension.

6.1 Mental Workload and RSVP
Our results show the relationship between presentation speeds and RSVP task performance. While
speeds exceeding 350 WPM demonstrated significant gains in reading speed compared to static
reading, they incurred a substantial cost in subjective workload. These performance outcomes
align with existing literature [45, 65], and our eye-tracking data further strengthens the impact
on perceived task load as evidenced by our task load measures. Our findings highlight the com-
plexity of analyzing physiological and subjective measures in research. The task load showed a
significant effect with increasing presentation speeds. Thus, the presentation speed has successfully
manipulated mental workload. However, text comprehension and pupil dilation did not show a
significant difference. Adopting Bayesian statistics provided a robust framework for handling pupil
dilation data. Bayesian statistics considers individual differences in pupil diameter data and their
interpersonal change towards different workload types, lighting conditions, or age [13, 69]. Thus,
we recommend collecting an individual baseline to obtain a calibration when using pupil dilation
for assessing VR RSVP reading interfaces.

6.2 Real-Time Assessment for RSVP Parameter Selection
Pupil dilation emerges as a valuable real-time indicator for evaluating RSVP reader designs. Its
practicality, particularly in VR systems where eye-tracking already is present, makes it an efficient
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choice compared to introducing additional modalities such as electrodermal activity [9, 11] or elec-
troencephalography [25]. Our data supports the concept of perceptual workload-aware computer
interfaces, demonstrating their ability to sense changes in reading speed based on pupil dilation.
The mean pupil dilation is a metric for measuring perceptual workload in RSVP. Our findings

indicate an increase in pupil dilation with increasing presentation speeds, consistent with the
motivational intensity model [63] and prior research on using pupil dilation [7] for adaptive inter-
faces [50]. We noted that pupil dilation declines when surpassing a threshold of approximately 500
WPM, contradicting our findings of subjective task workload and text comprehension question-
naires. Our findings are consistent with previous research [45], where the authors hypothesize that
participants reduce reading activity during higher presentation speeds.

6.3 Using Pupil Dilation in Interactive Systems
Using pupil dilation in interactive systems was envisioned in previous research. Yet, further research
is necessary before pupil dilation becomes viable in interactive systems. For example, the pupil
diameter can change through other stimuli besides mental workload. In this context, one major
drawback is its sensitivity to various external factors, such as changes in lighting conditions [57]
or the user’s emotional states [2], which can independently influence pupil size. Additionally,
individual differences in baseline pupil size and reactivity can vary widely, making it challenging to
standardize measurements across different users [13, 69]. Pupil dilation also tends to reflect general
arousal rather than specific mental workload, complicating the interpretation of data. Moreover,
continuous monitoring of pupil dilation requires specialized equipment, which may not be practical
or comfortable for all users in real-world settings. These limitations require further research in this
domain to establish reliable interaction in the future.

6.4 Study Limitations
Several design limitations in our study warrant consideration. The manipulation of presentation
speeds was confined to nine levels, with a maximum of 600 WPM, leaving the effects on pupil
dilation, subjective task load, and text comprehension unexplored for speeds beyond this range.
Additionally, our sample comprised individuals unfamiliar with RSVP, limiting the generalizability
of our results to non-trained users of RSVP.

6.5 Future Work and Outlook
Our findings provide a proof of concept for a potential adaptive system based on pupil dilation
measurements to regulate presentation speed. However, challenges such as variations in reading
speed, mobile use, interruptions, outdoor scenarios, and different viewing postures must be ad-
dressed before commercialization. We will begin with addressing individual differences in pupil
dilation. We will achieve this by investigating how interactive VR systems can be calibrated to
account for individual pupil diameter differences. Combining pupil dilation measurements with
other eye gaze metrics, such as smooth pursuit [42] and saccadic [16] eye movements, or other
psychophysiological metrics including heart rate variability [14] or electrodermal activity [43].
Furthermore, we will investigate how VR interface elements with heterogeneous brightness levels
can be detected and compensated for the measured pupil values. We will combine these findings
into a functional adaptive RSVP reading system. Finally, future research must consider individuals
with visual impairments, ensuring that adaptive models for RSVP presentation speeds are inclusive
[8, 22].

Proc. ACM Hum.-Comput. Interact., Vol. 8, No. MHCI, Article 284. Publication date: September 2024.



Your Eyes on Speed 284:13

7 Conclusion
This study uses eye-tracking technology to investigate the impact of presentation speeds in Rapid
Serial Visual Presentation (RSVP). We investigate in the first experiment the influence of pupil
diameter variation under different background lighting when reading with different presentation
speeds in Virtual Reality (VR). Our findings show an increasing linear trend for increasing pre-
sentation speeds when using gray background lighting. Thus, our second experiment evaluates
pupil dilation and the subjectively perceived task load and text comprehension for different RSVP
presentation speeds. While we found that the task load was successfully manipulated with in-
creasing RSVP presentation speeds, we did not find a significant effect on the pupil diameter. Yet,
Bayesian modeling shows that pupil diameter is distinguishable under specific circumstances, for
example, for presentation speeds ranging from 200 WPM to 450 WPM. Designing adaptive reading
interfaces that utilize pupil dilation to change the RSVP presentation speed in real time remains
challenging. The pupil diameter is susceptible to external stimuli, such as emotional arousal or
lighting conditions. Furthermore, factors related to reading, such as varying text difficulty, also
impose a challenge. We are confident that both experiments extend the understanding of which
lighting conditions maximize the discrimination of mental workload in pupillary data and how this
knowledge can be used to investigate the impact of interfaces on mental workload. The Unity code,
dataset, and analysis with all associated measures are publicly available for reproduction and use
in future studies6.
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