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Figure 1: We investigate the computational cost and classification accuracy for predicting emerging CFL using eye-tracking
data. We compare the efficiency of support vector machines, random forests, and long short-term memory networks to predict
central field loss.

ABSTRACT
Eye tracking is increasingly becoming prevalent for health-related
interactive systems. Eye tracking can automatically reveal the pres-
ence of Central Field Loss (CFL), a dysfunctional visual behavior
requiring time-intensive medical assessments. Since CFL typically
results in poor fixation stability and more frequent saccades, this
work investigates the use of machine learning to estimate the like-
lihood of CFL based on eye-movement data. We compared random
forests, support vector machines, and long-short-term memory
(LSTM) neural networks for their ability to discriminate between
the presence or absence of an experimentally-induced CFL. We
found that the estimation accuracy increases with larger samples
of eye-tracking data. However, the computational costs outweigh
any increase in accuracy after classifying window sizes of 1600
msec. Here, traditional machine learning approaches outperform
the LSTM neural network. We discuss implications for continuous
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end-user CFL monitoring and processing power to provide an out-
look for gaze-based wearable health devices in human-computer
interaction.

CCS CONCEPTS
• Human-centered computing→ Human computer interac-
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1 INTRODUCTION
Central-field Loss (CFL) can occur as a result of the aging mech-
anisms affecting the central part of the eye. It occurs when the
fovea — a 2◦ area of high visual acuity in the central visual field
— is affected by a CFL. This can be due to age-related macular de-
generation [48, 66]. Given that CFL patients are no longer able to
see with their fovea, they often learn to fixate with an extrafoveal
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location near the CFL instead using their foveal vision [68, 73]. This
acquired fixation preference is referred to as a preferred retinal
locus (PRL). As a result of using a PRL, individuals with CFL move
their eyes differently from those with intact vision [74]. Hence,
eye movement differences can be measured using eye-tracking, a
technique becoming increasingly researched for active interaction
and passive sensing [23].

Inspired by previous work in the area of pervasive health-related
interactive systems [75], we investigate if machine learning allows
for implicit CFL detection using continuous eyemovement behavior.
Eye tracking is expected to be integrated into pervasive computing
devices, which have already moved into mobile devices, including
head-mounted displays [2] and smartphones [70]. Already now, eye-
tracking is increasingly integrated into user computing devices [11,
32], together with the advances in calibration-less eye-tracking [27,
49, 62]. We envision future end-users devices to implicitly detect
and diagnose an emerging CFL in the future (see Figure 1).

However, the analysis of eye movements has not been consid-
ered for pervasive CFL diagnosis for two reasons: first, it is more
common to directly test for intact vision in clinical settings instead
of collecting eye movement behavior and analyzing potentially
diagnostic features. Unfortunately, this is a procedure patients seek
out only after noticing an emerging CFL during later stages. An
emerging CFL is a creeping process that patients may notice too late.
Providing an early detection system could support early interven-
tion strategies. Second, specialized training is required to interpret
highly variable eye movement behavior, compared to conducting
standardized clinical tests for visual acuity. This is laborious as
scarcely available trained specialists are required to conduct these
clinical tests. Hence, the continuous and automatic assessment of
visual impairments has been a focus of previous research [81]. How-
ever, the efficiency of detecting CFL using eye movement behavior
through artificial intelligence and the trade-off between estimation
accuracy and computational costs remain unclear.

This work evaluates two machine learning and one deep learn-
ing approach to predict CFL by tracking eye movement behavior,
including the cost-benefit between the estimation accuracy and
computational costs to facilitate pervasive and continuous CFL de-
tection in the future. Furthermore, we investigate the required costs
related to the estimation accuracy for effectively designing and en-
gineering human-machine systems that implicitly diagnose CFL
from eye movements through pervasive eye gaze monitoring. Using
a dataset collected from five participants experiencing a simulated
CFL scenario, we compare the classification efficiency of support
vector machines (SVM), random forests (RF), and long-short-term
memory (LSTM) networks for different data input lengths. Our
results show that we achieve an area under the curve (AUC) preci-
sion/recall of .86 using a RF classifier with a single entry of hand-
crafted features. In contrast, the long-short-term memory network
yields an AUC precision/recall of .73 using ten seconds of data
with a sample rate of 1000 Hz for existing CFL conditions. We dis-
cuss how our results can implicitly detect CFL by integrating eye
tracking into general-purpose devices.

CONTRIBUTION STATEMENT
The contribution of this work is threefold:

(1) We investigate if eye tracking is a reliable metric to pre-
dict emerging CFL using machine and deep learning in a
simulated scenario with five participants.

(2) We evaluate the computational cost required to make pre-
dictions, including a CFL accuracy assessment of different
classification algorithms.

(3) Finally, we discuss how our results benefit clinical assess-
ment and end-user scenarios for implicit CFL prediction.

2 RELATEDWORK
Advancements in specialized hardware and software allow the cap-
ture and analysis of physiological measures to predict changes in
gaze behavior reliably. It resulted in research on analyzing eye-
gaze patterns to understand and support user behavior in various
contexts, such as reading comprehension [31], mental health assess-
ment [21, 22], web browsing behavior [10], and novel and playful
interactions with computer systems [30] and games [33, 40]. Prior
research has used eye gaze along with classical machine learning
approaches, such as hidden Markov models and SVMs, to predict
user intentions [29, 69]. To the best of our knowledge, there has
been limited research performed that relied on machine learning
to predict CFL from natural eye movement behavior.

2.1 Central-Field Loss
Healthy vision provides a clear perception of the visual scene, even
though high acuity is restricted to only the central field (i.e., the
fovea). It is well-established that visual acuity exponentially de-
creases with increasing eccentricity [60]. Hence, we constantly
move our eyes to see things that are relevant to our goals. Selective
central field loss impairs our ability to perform everyday tasks. In
particular, CFL commonly occurs and worsens with increasing age.
For instance, age-related macular degeneration (AMD) and its sub-
variants are the leading cause of CFL in industrialized countries and
affect over 195 million people worldwide [79]. Individuals with CFL
tend to get diagnosed when they have experienced progressively
worse vision over a long period of time. Many individuals with CFL
might be accustomed to their poor vision for such a long time that
they do not recognize the benefits of the treatment of CFL. Thus, an
early diagnosis of CFL could enable many to learn mitigation strate-
gies and get available treatment. Furthermore, since CFL manifests
predominantly in the older population, these individuals tend to
attribute it to the aging process. Fletcher et al. [24] found that 56%
of their participants were unaware of the CFL, even in those with
CFL up to 30◦ in diameter, which is covering one-sixth of what an
individual can see with two eyes. If individuals become aware of
their CFL, they need to be clinically diagnosed by a specialist, with
procedures taking four to ten hours. This series of examinations is
tedious, invasive, and uncomfortable [18, 67].

In line with advances in artificial intelligence, machine learning
is increasingly applied to health diagnostics with promising success.
Nonetheless, many previous works are impractical for real-world
application. Previous work for health diagnostics has focused on
work involving visual imaging. An example is the use of optical
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coherence tomography (OCT), an imaging method used to gener-
ate pictures of the back of the eye. This approach has proven to
be a viable option in the detection of various visual impairments
affecting the central field [37, 64]. However, visual imaging requires
an individual person to capture an image of their retina explicitly.
Thus, while these machine learning approaches provide health di-
agnostics, they do not permit a proactive screening in everyday
life.

2.2 Gaze Behavior Variations with CFL
Persons with CFL exhibit unstable fixations [36]. For instance, when
asked to look at a specific part of a visual target for more than
several seconds, the area over which their eyes remain momentarily
stationery can be as large as 10 to 20 degrees [19, 54, 56, 77], more
than an order of magnitude larger than people with intact fovea
and normal vision. The high fixation instability and the implied
impaired oculomotor control in people with macular disease have
been suggested as the contributing factors to their impaired visual
acuity [51], reading ability [19, 55, 57], and face-recognition ability
[58].

Previous efforts in studying the fixation characteristics in people
with CFL have focused primarily on the location of the Preferred
Retinal Locus (PRL) for fixations and fixation stability. The PRL
describes the slight compensation by shifting the vision to focus
the target of interest on an area outside the CFL. Consequently,
previous research provided compelling success in directing the PRL
to a saccade target [53]. Nonetheless, Renninger and Ma-Wyatt [53]
showed that the scan path of eye movements was not direct for
individuals with CFL, even when the target was visible. Instead, it
curved towards the target at the end of the saccade and required
multiple small saccades to reach the target. In addition to being
non-direct, saccades with CFL have characteristics of non-foveating
saccades [78]. Such saccades have lower peak velocity and longer
duration than regular saccades without CFL.

Given these differences in eye movement, it is plausible that the
presence of CFL could be estimated from eye movement behav-
ior, maybe even before the individual perceives it. This raises the
question of how much eye movement data is necessary.

The collection of eye movement data presents a potential viola-
tion of personal data security. Besides health-related data, which is
of interest in the current work, attributes such as age and gender
[12, 46] could also be derived from eye movement data. Arguably,
it can also discriminate for other privacy-sensitive attributes, in-
cluding race, sexual preference, BMI, or hormonal cycles [4, 25, 39].
Collecting large amounts of data required for extracting informa-
tion about the unstable fixations and the number of fixations would
result in the loss of privacy of two kinds. First, an individual’s iden-
tity, as the user’s unique gaze pattern, allows for “fingerprinting” as
it contains several bio-indicators, as mentioned previously. Second,
is the inference of interests, which, when annotated by semantics,
the measurement of interest in items displayed on-screen reveals
political, sexual, cultural, or other lifestyle preferences [41]. While
there are existing methods, such as PrivacEye [65] to preserve pri-
vacy during eye tracking, these solutions might exclude the fixation
stability or the saccade frequency. This work will estimate the trade-
off between computational cost and estimation accuracy of CFL

with eye-tracking using small chunks of data within an LSTM-NN
model.

2.3 Machine Learning Clinical Diagnosis from
Gaze Data

Detecting visual impairments using eye tracking has been inves-
tigated in past research [16]. However, most of these works use
optical coherence tomography (OCT), an imaging method used
to generate pictures of the back of the eye. Smith et al. [63] used
a Gaussian Mixture Model in their process of assessing reading
performance in patients with Glaucoma using eye tracking. Other
use cases outside of visual impairment include but are not limited
to, using eye gaze characteristics to train a machine learning model
to predict the presence of dyslexia using eye tracking [52].

2.4 Relevant Aspects of Machine Learning
Influencing Cost-Benefit

Given their effectiveness, Neural Networks (NNs) are increasingly
applied to solving many visual computing tasks. In particular, deep
learning-based solutions for gaze estimation have been popular
in recent years. For example, Vora et al. [76] compared the perfor-
mance of several Convolutional Neural Network (CNN) architec-
tures: AlexNet, VGG16, ResNet50, and SqueezeNet in predicting
different gaze areas. Especially Long Short-Term Memory Neural
Networks (LSTM-NN) [28], a recurrent neural network (RNN) vari-
ant, is suited to process non-linear dynamic and spatiotemporal
information. The LSTM network retains the cell state in the RNN
and adds three gates named the input gate, out gate, and the forget
gate. The cell can remember values over arbitrary time intervals,
and the three gates regulate the flow of information in and out of
the cell. Due to these gates, LSTM can handle long-term dependen-
cies and is more effective for tasks with time-series data, such as
eye-tracking data.

2.5 Summary
Previous work informed us that CFL is a slow process that goes
unnoticed by the ones affected [79]. Typically, high resolution is
confined to the central part of the vision; while there is a decrease in
visual acuity, the further away sharpness is considered away from
the fovea. As the disease progresses, healthy regions that can be
used as PRL increase in eccentricity, affecting, in turn, visual acuity.
The visual acuity, therefore, decreases while the PRL eccentricity
increases [60], changing how users with CFL focus their gaze on
targets of interest. Consequently, CFL leads to unstable fixations
and saccades [36] that can be captured via eye tracking and used
to detect the development of CFL early. In this context, machine
learning has been used to detect CFL automatically with different
methods and clinical settings [16, 52, 63]. In contrast to previous
work, we evaluate the classification accuracy and computational
costs of using Support Vector Machines (SVMs), Random Forests
(RFs), and LSTM-NNs to detect CFL using eye tracking. We analyze
different feature parameters that maximize the accuracy of predict-
ing CFL and investigate different window sizes (i.e., the duration
and hence the amount of data needed) to make reliable predictions
about the existence of CFL. Here, we optimize the computational
costs of model training and CFL prediction.
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Figure 2: (a): Baseline without simulated CFL. (b): Simulated gaze contingent CFL of 6◦ of the experiment.

3 METHODS
This section details the steps involved in the proposed approach
for determining the cost-benefit trade-off and estimation accuracy
of central field loss. First, we describe the data acquisition process.
Next, we describe the pre-processing. This is followed by describing
the model used to train and validate both the machine learning and
deep learning approaches. Finally, we explain how we evaluated
the cost associated with the different models and how this relates
to variable window sizes for the deep learning approach.

3.1 Dataset and Experimental Description
Our experiment used eye-tracking data from Barraza-Bernal et al.
[6]. We decided to use a dataset where participants had a simulated
CFL to ensure the reproducibility of our results across participants.
This ensures that the CFL does not vary as would with participants
affected by CFL (i.e., shape and size of CFLmay vary among affected
participants). Using a dataset from a study where participants use
a simulated visual impairment is commonly used to study phenom-
ena in vision research e.g., Sipatchin et al. [61]. Five volunteers (𝑥 =
28.8 years) with normal or corrected-to-normal vision participated
in the study. Every participant was trained to acquire a periph-
eral retinal locus of fixation after four training sessions using a
simulated gaze-contingent CFL of six degrees, totaling between
two to three hours of training per participant [5]. Eye movements
were recorded using an SR Research EyeLink 1000 Plus eye tracker
with a spatial resolution of 0.01◦ and a sampling rate of 1000Hz
[6]. The participants were asked to perform a visual discrimination
task where the participant was asked to discriminate between the
presence of having more red or blue dots on the screen by pressing
the arrow up or down on the keyboard (see Figure 2). We used a
subset of the data consisting of two CFL simulations: one simulation
without CFL (i.e., the baseline) and a simulation with a simulated
gaze-contingent CFL of 6◦, representing CFL that can go unnoticed
[24].

3.2 Machine Learning
3.2.1 Dataset Preprocessing. We identified fixations, saccades, and
eye blinks using the EyeLink parsing algorithm and adopted the
following cutoffs based on previous related work [71]: saccadic

velocity threshold of 30◦/𝑠 , a saccadic acceleration threshold of
8000◦/𝑠2, and motion threshold of 0.1◦. Eye movement data be-
low the velocity threshold and acceleration threshold criteria were
classified as a fixation. Otherwise, it was labeled a saccade eye
movement. For the saccade, we collected the following features:
duration, average position of the gaze in 𝑋 and 𝑌 coordinates, and
average pupil dilation. For the fixations, we extracted the duration
of the saccade, the start and end points in x and y coordinates, the
amplitude in degrees, and the peak velocity in degrees per second.
For the blinks, we simply extracted the duration of the blink. All
cells containing no values (e.g., NaN) were set to an arbitrary num-
ber that does not occur (-1) to enable these rows of data to be fed
into the models described below.

3.2.2 Model Description. We decided to use a Support Vector Ma-
chine (SVM) and Random Forests (RFs) to evaluate the CFL pre-
diction accuracy. CFL leads to a linear gaze deviation. SVMs and
RFs are linear statistical models and, hence, suitable to predict CFL.
We analyzed the eye movement features mentioned above using
hyperparameter optimization for RF and SVM models. SVMs were
our first choice as a model as it has been extensively used in classi-
fication problems, especially in eye-tracking research. Thus, using
SVM as a baseline method allows comparisons with previous and
future work. SVM maps its input vectors into a high dimensional
feature space through a chosen non-linear mapping and then finds
an optimal hyperplane to separate the classes with a maximal mar-
gin, which reduces the generalization error [45]. This work uses
the SVM implementation in the Python library Scikit-learn [15].

RF is a classifier comprising an ensemble of randomized decision
trees, which make a joint decision on the class [14]. Like SVM, RF
has been used with good results in various tasks. First, we applied
RF to compare SVM with at least one other popular method. In
addition to its demonstrated practical usefulness, RF models tend to
be robust, which is important as this work could generalize to health
diagnostics, generalization capability, and intrinsic feature selection
opportunities embedded in decision tree-based methods [20]. Here,
we applied the RF and SVM implementation from scikit-learn1 [15].

1www.scikit-learn.org/stable

www.scikit-learn.org/stable
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Figure 3: Feature importances measured by the mean decrease of Gini-impurity for the leave-one-participant-out nested
cross-validation. The pupil size achieves the highest importance among all features.

An appropriate configuration of the hyperparameters is neces-
sary to produce a model with the best performance for the problem.
For this, we used grid search for exploring the hyperparameter
space, using scikit-learn. We opted to do an exhaustive search of the
most suitable kernel type, 𝐶 (i.e., the regularization parameters),
and 𝛾 (i.e., the radial basis width) for the SVM.

Similarly, we did an exhaustive search to find the optimal number
of trees for the RF (i.e., denoted as 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠), the criterion,
maximal depth of the trees in the forest, the minimal sample split,
and the𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 parameter. Having a larger number of trees
in the forest increases the classification efficiency at the cost of
increasing the computational time required to train a model. When
splitting a node in the decision tree, the feature used for the split is
selected from a random subset of features. The number of features
chosen for this subset is determined by the𝑚𝑎𝑥_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 parameter.
The other RF parameters remained in their default settings.

3.3 Deep Learning
3.3.1 Dataset Preprocessing. For the deep learning models, one
second of data was removed from the eye movement data before
and after the calibration and validation sequence. The following
windows represent the data interval that the model needs to esti-
mate the likelihood of CFL. The window sizes vary from 50 msec
to 10,000 msec of data, increasing in steps of 50 msec. The overlap
between windows is always exactly half of the window size, e.g.,
if the window size is 50 msec, the window is moved 25 msec at a
time. The window is removed if the window contains invalid values
(e.g., because of blinks). Following this, we normalized all windows
by moving the series of data points at the start of each window
to the coordinate 0,0. Afterward, we turned the window such that
the data point following exactly points up. Each window contains
the x and y screen gaze coordinates (i.e., the pixel coordinates) and
the pupil size value in the sum of the number of pixels inside the
detected pupil contour.

3.3.2 Model Description. Weuse a Long Short-TermMemory (LSTM)
network for learning temporal long-term dependencies, especially
when predicting time-series which is usually the case when clas-
sifying gaze data. The input layer of our model varied in size to
accommodate the window size, e.g., when there was a window size
of 50 msec, the input layer was 50 × 3 (x, y, pupil dilation). After the
input layer, we used an average pool layer with a pool size of 3. The
third layer is our first LSTM layer with 32 nodes. The fourth layer
was another average pool layer with a pool size of 3. The fifth layer
was a dropout layer with the dropout set to 0.5. The sixth layer
is our second LSTM layer with 20 nodes. After which, we have a
second dropout layer, again set to 0.5. Followed by the output layer
with 2 nodes representing the no-CFL or CFL condition.

We trained the model using an exponential decay learning rate
scheduler, with an initial learning date of 0.0001, decay steps of
20,000, and a decay rate of 0.98. We enabled early stopping while
monitoring the validation precision-recall with a patience 10. We
set the maximum number of epochs to 500 and the batch size of
128. All models were trained with a loss function for binary cross-
entropy and precision-recall area under the curve for the metrics,
using one GPU per run (Tesla V100), in TensorFlow using the Keras
API [17].

3.4 Evaluation
All models were evaluated using a leave-one-participant-out nested
cross-validation. All run times of final models are done on a Mac-
Book Pro 13" (i7 2.8 GHz, 16 GB, Intel 655). For the cost function,
we take the run time into account that a single entry requires to be
evaluated by our models. We denote the cost as the following:

𝐶𝑜𝑠𝑡 =

{
𝑡, if 𝑡 < 𝑤

2𝑡, if 𝑡 ≥ 𝑤
(1)

𝑡 is the time in msec needed to evaluate a single entry, and𝑤 is
the duration of the feature or window size in msec, depending on
whether we evaluate our approach via machine or deep learning.
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Table 1: Accuracy, precision, recall, weighted 𝐹1 scores and AUC PR of the leave-one-participant-out cross-validation for the
best models from the hyper-parameters optimization for the feature-based models.

Model Parameter Accuracy Precision Recall Weighted 𝐹1-Score AUC PR

SVM C: 1000 .730 .736 .722 .726 .821Kernel: rbf

RF

Criterion: Gini

.769 .758 .750 .766 .863
Max Depth: None
Max Features: Auto
Min Sample Split: 6
Number of Estimators: 900

RF

Criterion: Gini

.766 .756 .752 .765 .860
Max Depth: None
Max Features: Auto
Min Sample Split: 9
Number of Estimators: 300

The cost function is a linear function of the time required to evaluate
an entry. However, if the time required for evaluating the entry is
larger than the duration or window size, there will be a penalty of
a factor of two for the time.

4 RESULTS
We compared the classification accuracy between traditional ma-
chine learning (i.e., SVM, RF) and deep learning (i.e., LSTM), after
which we compared these models using the cost-benefit function.
We evaluate a general classification model by investigating the
classification performance through leave-one-participant-out cross-
validation. This means that we use all participant data for training
except for one participant, which we use for evaluation. Seman-
tically, this approach learns a model without knowing anything
about the person in advance and predicts the presence of CFL in-
dependent of individual context and differences. We describe the
results in the following.

4.1 Machine Learning
We applied the methods of Section 3.2, which resulted in 11 features
and 33,583 entries for these features combined. We then trained
and validated the model with 100 cycles for precision and recall
and using a leave-one-participant-out cross-validation for the two
classification techniques and their combinations of parameters.
Table 1 shows an overview of the best results. The column model
indicates the machine learning method used to produce the model.
The column “parameter” column indicates the parameters used to
initialize the model. The precision and recall columns contain the
average score with their standard deviation.

4.1.1 Support Vector Machine. The SVM showed the best perfor-
mance by using 𝐶 = 1000 and with a radial basis function kernel,
resulting in an accuracy of .73 (precision: .72, recall: .73, weighted
𝐹1 score: .73). We found a single set of parameters that performed
best for precision and recall.

4.1.2 Random Forests. The RF classifier outperformed the SVM
classifier for optimizing for precision and recall with two sets of
parameters as shown in Table 1. We found the difference in the

two models on two features, namely, the minimum sample split
and the number of estimators. While the best-performing model
for precision uses a minimum sample split of 6 and 900 estimators,
the best model for recall uses values of 9 and 300, respectively.

Analyzing the most relevant features shows us that the average
pupil size accounts for .238 of the Mean Decrease in Impurity (MDI),
which can be seen in Figure 3. Followed by the saccadic amplitude,
the duration of the feature and the average y position during a
fixation. Together, these four features make up over half of the
MDI.

4.2 Deep Learning
We applied the methods described in Section 3.3 to train our LSTM
models. We trained and validated our models using the leave-one-
participant-out cross-validation, resulting in a total of 1000 trained
models. Each is trained on a different combination of window sizes
and participants. As visualized in Figure 4a, we can see a general
increase in mean Area Under the Curve (AUC) for precision and
recall as we increase the window size for our LSTM models. This is
to be expected.

More interestingly, the steepest AUC benefit is achieved at ca.
1,600 msec. Accuracy increases are minimal and variable after 5
seconds of window size, although increasing the window size to
9950 msec generated accuracy benefits of up to .725. However,
increasing the window size also tends to capture more blinks. This
resulted in missing values, resulting in sparser data. We visualize
the eye-tracking data for windows sizes of 1250 msec in Figure 5.
Here we see all the individual data points visualized after processing
for participant five for both conditions. The data points scatter more
during the CFL simulation conditions than those without CFL.

4.3 Evaluation
We applied the methods from Section 3.4. We ran each model 100
times, evaluating a single data entry. In Figure 4a, we show a linear
relation between mean evaluation time and the window size, de-
noted as 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒 = 0.00415 ×𝑤𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒 + 37. We also
see that the penalty function described in Section 3.4 never applies,
as the evaluation time stays well below the window size.
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(a) (b)

Figure 4: (a): Mean evaluation time plotted on the left-y-axis, mean AUC Precision-Recall plotted on the right-y-axis,the
accompanying window size on the x-axis. The yellow line denotes the trade-off between the required window size and
classification accuracy. A reasonable trade-off is achieved at ca. 1600 msec, since longer window sizes degrade the classification
performance (e.g., due to loss of data through eye blinks). (b): Mean AUC Precision/Recall plotted on the y-axis and the
accompanying evaluation time on the x-axis.

When visualizing the cost described by the linear equation above
and the benefit from the increase in window size as visualized in
Figure 4bwe can see that there is a lot of benefit at the start while the
evaluation time only increases slightly. After this, there is little gain
in the AUC PR while the evaluation time keeps linearly increasing.
Given that the information becomes sparser with the increase in
window size, we recommend using a window size of 1600 msec for
the best cost-benefit trade-off (see Figure 4b).

5 DISCUSSION
While previous research had already shown that classifying the
presence of CFL was possible using eye tracking, we investigated
what an optimal time frame would be to consider for evaluating the
presence or absence of CFL. This work provides a cost-benefit anal-
ysis comparing different window sizes against the computational
costs for CFL detection.

5.1 Cost-Benefit of CFL Detection
A 6◦ of CFL is a size many persons will not notice [24]. In contrast,
our trainedmodels can recognize 6◦ of CFL by observing differences
in eye movements, although users will not notice this size of CFL.
Our findings show that a window size of 1600msec provides optimal
results.

However, several constraints make long-term observations of
CFL undesirable. For example, storage constraints and the amount
of eye-tracking data that can be temporally or permanently stored
on a device are limited. As 10 minutes of eye tracking data results
in approximately 35 Megabyte of data, storing information for the
entire day on mobile devices would therefore be unrealistic to tailor
the model for individual users, even if the current trends of mem-
ory storage continues to increase. Further constraints include the
processing power of mobile computing devices. As processing time
correlates with the power usage required for evaluation, analyzing
large amounts of data on mobile devices will reduce the battery life
of these devices (e.g., tablets, smartphones, standalone mobile eye

trackers). However, this issue can be circumvented by periodically
transmitting the collected eye-tracking data to a server for compu-
tation. Subsequently, the model can be updated for individual users
without laborious processing on mobile devices.

5.2 Generalized CFL Assessment
The leave-one-participant-out cross-validation predicts the pres-
ence or absence of CFL independent from the participant with
an accuracy of .769 using RF. Consequently, the classification per-
formance can be improved by accumulating crowd-sourced data
from multiple or individual participants through non-intrusive
ubiquitous eye-tracking. The general model does not require prior
knowledge about the user and could be implemented into every-
day systems without tailoring the model individually to a specific
user. Hence, the general classifier can be used as a seed model to
improve the classification accuracy individually. We envision that
more research with crowd-sourced eye-tracking data from single
users can improve the classification accuracy on an individual level.
However, more research is required to consolidate this claim.

Results of feature importance agree with the findings reported by
Verghese et al. [74], identifying that individuals with CFL have poor
fixation stability and that they have difficulty directing their PRL to
a target, which results inmore and smaller saccades to reach a target.
Furthermore, we identify the pupil size as an important feature (see
Figure 3). However, we can also contribute the differences in pupil
size as a factor of cognitive workload [7, 34, 72]. Furthermore, the
interaction performance with the simulation may be improved
when experiencing CFL for the first time, thus exerting more effort
during the study [35]. However, there is scarce work on whether
this also applies to patients with CFL due to a visual impairment.

5.3 Limitations and Future Work
We acknowledge that our study is prone to several limitations. We
used a dataset containing data from a simulated CFL that might not
correspond with CFL experienced in the real world. Participants
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Figure 5: Rose plot of eye movements after pre-processing for deep learning for participant 5 for a window size of 1250ms. It
shows where eye movements are going towards and how many points are overlapping. Darker is more. (a) Without simulated
CFL and (b) with simulated CFL.

who experience CFL for the first time through simulations might
have affected eye movements through increased cognitive work-
load [34]. However, we still decided to use a simulation for our
classification to control the CFL severance levels across all partici-
pants throughout the study. In future research, we will investigate
the classification accuracy and required computational resources
with participants affected by CFL with different severity levels.

Furthermore, our results assume the presence of a CFL with 6◦
for all participants, where the data collection for a few seconds is
sufficient to predict CFL reliably. However, this is rarely the case
in practice. CFL is a slow process that constantly shifts the gaze
focus point by a few degrees. To investigate the evolution of the
classification accuracy for different and increasing CFL levels, we
will conduct user studies with CFL patients. This follow-up study
will provide insights into changes in classification duration and
accuracy.

The robustness of our approach heavily relies on the quality of
eye-tracking data and the used pre-processing [59]. Thus, reliable
in-the-wild CFL classification becomes less reliable with smaller
window sizes, and as eye-tracking inherently suffers from blinks
this is a challenge as shown by Grootjen et al. [26]. As state-of-the-
art mobile eye tracking is currently not far from the sampling fre-
quency we used to create our models [3] (e.g., AdHawks’ MindLink
with 500Hz2). Previous research states that sampling errors are no
practical problem for eye trackers operating above 200Hz [1]. We
state that this is not a cause for concern for our models. However,
mobile head-worn eye trackers can exhibit significant errors from
movements that occur during speech and facial expressions [47]
and is further increased for those with CFL [42, 43]. In future work,
we will investigate how eye-tracking data can be reliably obtained

2www.adhawkmicrosystems.com/adhawk-mindlink

in realistic settings. In a real-world study, we will collect data, to-
gether with users with and without CFL, to assess the data quality
and classification performance.

Furthermore, our findings suggest that individuals with induced
CFL could experience higher cognitive workload due to an increased
pupil dilation, where this might not be the case for patients who
have CFL (see Figure 3), although various other reasons can influ-
ence pupil dilation. We will conduct a study to verify our findings
with people who have CFL. We additionally observed that as we
increased the window size for our models, we gradually got sparser
data (e.g., because of blinks). Therefore, we will conduct a study to
look into alternative ways to deal with the presence of blinks in
eye movement data.

Our models classify between the presence or absence of an in-
duced CFL of 6◦. Using normal participants with induced CFL is
a valid alternative to AMD patients [13, 44] since extensive lit-
erature has shown similar gaze behavior in both study members
[8, 9, 38, 50, 80]. Nonetheless, in future work, we will focus on using
eye-tracking data from patients with CFL to confirm the results
found. Additionally, future studies will look into finding the mini-
mal size of CFL that is detectable using eye tracking by integrating
it into daily interactive systems. The earlier we can notify users
of the presence of CFL, the earlier the appropriate actions can be
taken to counter the progression of visual diseases (e.g., AMD).
Consequently, early on, mitigation strategies can be adopted to
reduce the decease’s impact on the quality of life.

6 CONCLUSION
This paper presents a cost-benefit trade-off betweenmodel accuracy
and computation to classify the presence or absence of Central Field
Loss (CFL). We found that there is a lot of benefit for adding more

www.adhawkmicrosystems.com/adhawk-mindlink
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data to the input, and that there is an optimum around 1600 msec for
our LSTM-NN model. This finding is unique as other findings focus
on the gain acquired with more complex models and using context
dependent data. However, using feature-based models, including
random forest and support vector machines, outperform the LSTM-
NN-based models. Our findings suggest that longer window sizes
perform worse due to missing data or noise (e.g., eye blinks). Future
work should investigate possible approaches to deal with blinks in
continuous eye movement data for deep learning approaches, such
as our LSTM-NN-based models.
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