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Abstract
It is increasingly viable to measure the brain activity of mo-
bile users, as they go about their everyday business in their
natural world environment. This is due to: (i) modern sig-
nal processing methods, (ii) lightweight and cost-effective
measurement devices, and (iii) a better, albeit incomplete,
understanding of how measurable brain activity relates to
mental processes. Here, we address how brain activity can
be measured in mobile users and how this contrasts with
measurements obtained under controlled laboratory condi-
tions. In particular, we will focus on electroencephalography
(EEG) and will cover: (i) hardware and software implemen-
tation, (ii) signal processing techniques, (iii) interpretation of
EEG measurements. This will consist of hands-on analyses
of real EEG data and a basic theoretical introduction to how
and why EEG works.
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Introduction
Measurements of cortical activity are increasingly accessi-
ble. Recent years have witnessed a rapid decrease in their
cost, both in terms of purchase price and physical encum-
berance. This has resulted in their integration, amongst
other implicit and physiological signals, as an input device
in mobile and ubiquitous computing [17]. One notable ex-
ample is electroencephalography (EEG), which refers to the
attachment of skin electrodes to the scalp in order to mea-
sure changes in the electrical potential of neurons in the
brain. The fundamental motivation for doing so is the belief
that EEG measurements reflect cognitive processes that
take place in the brain. In other words, EEG measurements
could provide us insight into: (i) how sensory stimuli might
be perceived by users, (ii) hidden mental states (e.g., fo-
cused attention) that could be induced by interface devices,
(iii) the amount of mental resources required to perform the
same task equally well under different scenarios, amongst
other reasons.

Figure 1: Participant wearing a
mobile EEG device whilst
performing a spatial navigation task
in a CAVE-like virtual environment.
Photo: Lewis Chuang.

Besides lowered costs, EEG is increasingly viable as a tool
for “reading” the human mind because of advances in: (i)
signal processing algorithms that increase the cortical sig-
nal to non-cortical noise in EEG recordings, and (ii) a better
understanding of how the mind works. While we are far
from a complete understanding of how the human mind
works, or how 100 billion neurons might interact with one
another in order to give rise to our conscious experience of
the world we inhabit [9], technological advances have fa-
cilitated our understanding by ensuring that we are indeed
measuring cortical activity. The miniaturization of ampli-
fiers, sometimes housed within the local electrodes itself,
boost the signal at the recording site and allow for more
user mobility. Besides this, signal processing algorithms are
constantly improved upon to filter out non-cortical activity in
the EEG recordings.

Improvements in signal processing methods and the hard-
ware design of EEG recording have also facilitated its de-
ployment in everyday settings [6, 3]. The introduction of
dry electrodes have drastically reduced preparation time by
removing the need to apply wet electrolyte gel as a conduc-
tive medium [4]. More recently, novel electrode montages
have been proposed to render EEG electrodes inconspic-
uous. In-ear electrodes and electrodes placed around the
ear allow users to wear EEG throughout the day without
appearing out of place [1, 8]. These developments, and oth-
ers, have lowered the barrier for integrating EEG recordings
as an input modality for real-world computing applications.

Although technology has made it easier to record the corti-
cal activity of users engaged in real-world activities, the ap-
propriate application and interpretation of EEG recordings
will be an issue. For instance, it is common for researchers
with the objective of reading the minds of their targeted
users to be sorely disappointed when they are greeted by
undecipherable squiggly lines, namely changes in the elec-
trical potentials of EEG electrodes. Some manufacturers
might provide read-out indices for operational concepts,
such as mental workload and task engagement. Nonethe-
less, generic off-the-rack measures rarely serve the pur-
pose of expressing the bespoke purposes that a given sce-
nario or interface is designed for.

Therefore, we will address the practical concerns relating to
the use of EEG and their theoretical fundamentals.

Program
This half-day tutorial will consist of short lectures on EEG
theory, interspersed with practical sessions. Participants will
be introduced to open-source software tools that they will
use to analyze datasets alongside the instructors. The sup-
plied datasets were collected in two different studies (see
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Figure 2: In this image, a participant is shown wearing a cap with high-density 64 EEG channels. On the left, the participant is performing a
visual psychophysics task (i.e., volumetric shape perception from texture gradient) in a traditional setup, which tries to minimize
muscle-induced EEG artifacts by ensuring that the participant is fixed in a chin-rest and that response movements are kept to a minimum (i.e.,
button presses). On the right, the participant is performing an internet image search task (i.e., find the best football team in the world), which
requires copious and diverse arm and finger movements. Image: Lewis Chuang.

next section). These datasets were collected with three
EEG systems: a 14-channel low-cost system, a 24-channel
system with mobile phone integration, and a 64-channel
medical-grade system.

By the end of the tutorial, participants will understand how
EEG recording devices could be integrated with other de-
vices, pre-processing steps for preparing EEG data for
subsequent analyses, the use of independent component
analysis for the removal of non-cortical artifacts, and the
derivation of some established metrics of EEG data for in-
ferring user states.

Table 1: Program Overview

Time Topic Format
1300 hrs Introduction to EEG Lecture
1330 hrs Setting up an EEG system Demonstration
1415 hrs Frequency-Based Analyses Hands-On
1500 hrs Break
1530 hrs Signal Pre-processing Hands-On
1600 hrs Independent Component Analysis Hands-On
1630 hrs Interpreting EEG Responses Lecture
1700 hrs Event-Related Analyses Hands-On
1745 hrs Questions
1800 hrs End of Programme
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Use Case Scenarios
Mental workload
EEG data were collected from twenty-two participants who
performed a standardized mental workload task on a mo-
bile phone [10]. More specifically, they performed a visual
single matching digit recall N-back task with two levels of
task difficulty (i.e., N=0 vs N=2), whereby mental workload
was varied by increasing the number of numeric digits that
they had to maintain in short-term working memory. Dig-
its were visually presented one after another (duration=1
sec). In the 0-back task, participants had to compare each
presented digit with the target digit presented at the start
of the experiment. They had to respond whenever a match
was detected. In other words, they only had to maintain
one digit in their short-term working memory. In the 2-back
task, participants had to respond whenever a presented
digit matched an item presented two digits before. Thus,
they had to maintain two digits in short-term working mem-
ory at any given time and to update their memory with every
new digit presentation. The N-back task is an established
paradigm for manipulating mental workload and is highly
robust in yielding discriminative EEG recordings, e.g., [2].
This dataset will be used to demonstrate frequency-based
analyses for inferring the level of mental workload experi-
enced by the user. This dataset was collected with a 14-
channel low-cost system. In addition, we provide a compar-
ison data sample that was collected independently and with
a 24-channel EEG system with mobile phone integration.

Auditory in-vehicle notifications
EEG data were collected from thirty participants who re-
sponded to auditory notifications that were designed to alert
drivers to changes in driving conditions or to cue them to
perform certain tasks [5]. This dataset is sub-divided into
one that was collected under in a highly controlled psy-
chophysics laboratory and another that was collected in a

virtual reality vehicle simulator. With this dataset, we will
demonstrate how environment variables could induce dif-
ferences in the raw data. More importantly, we will demon-
strate how signal processing techniques can significantly
clean up the recording data. This dataset will also be used
to demonstrate event-related analyses. Specifically, this
paradigm allows us to make inferences on how different
types of auditory notifications (i.e., verbal vs. icons) might
be processed by the brain differently.

Outlook
We seek to address many of the issues that one can expect
to encounter when first implementing EEG recordings. We
introduce many of the software tools for processing EEG
data and the main approaches for deriving principled infer-
ences from EEG data. This tutorial does not cover brain-
machine interfaces, which is a specialized research area
that focuses on how EEG recordings can be employed as a
real-time control input or as a passive indicator of the user’s
mental state [12, 11, 14]. Also, other neuroimaging devices
that are suitable for mobile use are not covered here, in par-
ticular functional near-infrared spectroscopy [13, 7].

EEG measurements can be a reliable measure of a user’s
mental state. One particular advantage that it offers is that it
provides an estimate of the mental capacity of a user with-
out requiring an explicit response from the user. For exam-
ple, we can measure the involuntary response of the brain
to task-irrelevant stimuli in the environment, in order to eval-
uate how engaged users are with their given task [15]. In
other words, it is a non-obtrusive approach that comple-
ments explicit interviews and/or performance measures, by
filling a gap that such methods leave behind. Thus, it is an
approach with the potential to ubiquitously assess and fa-
cilitate the implicit interactions between humans and their
mobile computing systems [16].
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