
Working with Augmented Reality? A Long-Term Analysis of
In-Situ Instructions at the Assembly Workplace
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ABSTRACT
Due to increasing complexity of products and the demo-
graphic change at manual assembly workplaces, interactive
and context-aware instructions for assembling products are
becoming more and more important. Over the last years,
many systems using head-mounted displays (HMDs) and in-
situ projection have been proposed. We are observing a trend
in assistive systems using in-situ projection for supporting
workers during work tasks. Recent advances in technology
enable robust detection of almost every work step, which is
done at workplaces. With this improvement in robustness, a
continuous usage of assistive systems at the workplace be-
comes possible. In this work, we provide results of a long-
term study in an industrial workplace with an overall runtime
of 11 full workdays. In our study, each participant assembled
at least three full workdays using in-situ projected instruc-
tions. We separately considered two different user groups
comprising expert and untrained workers. Our results show
a decrease in performance for expert workers and a learning
success for untrained workers.
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INTRODUCTION
With increasing ability to seamlessly interconnect sensors,
many production processes are augmented with sensor tech-
nology. This mainly enables to track products from design
along their way through the manufacturing processes [27].
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Figure 1. A user is working on an interactive workplace. A projec-
tor is displaying in-situ instructions directly on the work piece while a
Kinect v2 checks for correct assembly.

Additionally, this enables to create a better quality documen-
tation for each assembled product. Today, the quality docu-
mentation is mostly done by taking a picture of the assembly
process after each work step. This is helpful if an assembly
error in assembled products was noticed after shipping them
to customers. In such cases, companies need to recall all erro-
neous products. However, instead of recalling every product
of the erroneous type, the pictures taken during the assembly
can be used to identify erroneous parts in a post-process and
are helping to only recall the products, where an error was
made. Moreover, in the near future, we can easily imagine
using more sensor data than just an RGB image to automat-
ically store the parameters of production (e.g. the used tools
and parts, the assembly duration, the applied force by a drill)
in a database. These data could be used to automatically iden-
tify assembly errors and even prevent them from happening
in the first place.

In addition to just using the stored data of the assembly steps
for quality control, the stored data can also be used to as-
sist workers during their assembly tasks. An assistive sys-
tem could automatically detect when a worker made a mis-
take or forgot a work step during the assembly and intervene
immediately. These systems could be used in several sce-
narios: training new workers in a new assembly task, contin-



uously supporting expert workers by only intervening if an
error was made, and continuously supporting cognitively dis-
abled workers, who benefit from a constant assistance [14,
15].

As augmenting users or workplaces to provide assistance dur-
ing work tasks has been a research topic for more than 20
years [6], many assistive systems for Industrial Augmented
Reality for providing help in each task from designing to
assembling a product have been proposed [8, 9]. Although
many approaches have been considered, only a few made it
out of the lab into the industry [26]. According to Navab [24],
all approaches that might make it to market have to fulfill
three requirements: An assistive system has to be reliable,
user-friendly, and scalable. Recently, we can recognize a
trend that systems using in-situ projection (e.g. see Figure
1) to assist users at their workplace are more and more de-
ployed in workplaces in the industry and are even already
commercially available. One example is the Werklicht sys-
tem from EXTEND3D1, which uses laser projection to high-
light drilling positions. Another example is the Light Guide
System from OPS solutions2. Finally, we can observe that
systems using in-situ projection fulfill Navab’s [24] require-
ments and are likely to become more present in the market
soon.

We believe that this trend will sustain, as instructions on an
HMD were not well accepted by the users [30]. Surpris-
ingly, the long-term effects of in-situ projected instructions
on workers have not been scientifically studied yet. With this
work, we aim to close this gap and provide insights consider-
ing disadvantages and benefits of a long-term usage of in-situ
projected instructions at the workplace for untrained workers
and expert workers. To the best of the authors’ knowledge,
this is the first work to provide a long-term evaluation of in-
situ instructions at manual assembly workplaces including 3
days of assembling using in-situ instructions.

The contribution of the paper is two-fold: (1) We present a
continuation of an assistive system using in-situ instructions
and work step detection, which works robust enough to per-
form a long-term study with a duration of 11 days. (2) We
provide results of a long-term usage of in-situ instructions at
manual assembly workplaces considering two different user
groups: expert workers and untrained workers.

RELATED WORK
Industrial Augmented Reality, which is applying Augmented
Reality (AR) in industrial processes, was first intoduced in
1992, when Caudell and Miezell [6] suggested using instruc-
tions that are shown on an HMD to support workers dur-
ing assembly processes. In their manufacturing scenario, the
HMD is showing the drill positions and information about
the drilling distance in a textual representation. Later, Boud
et al. [4] compared AR and Virtual Reality (VR) instructions
to traditional 2D drawings and found, that interactive instruc-
tions outperform traditional ones. However, manufacturing is
1EXTEND3D - http://www.extend3d.de/werklichtpro.
php (last access 03-10-17)
2OPS solutions - http://www.ops-solutions.com (last access
03-10-17)

only one of many scenarios for Industrial Augmented Real-
ity (IAR), as comprehensive surveys [25, 26] show, that IAR
can be used to support almost every aspect of a product life
cycle. Fite-Georgel [8] divided IAR into five areas of applica-
tion: product design, manufacturing, commissioning, mainte-
nance, and decommissioning. While our work focuses on the
manufacturing scenario, we mostly analyze related work as-
sociated with manufacturing.

Many systems for providing assembly instructions on differ-
ent types of displays have been proposed. While Billinghurst
et al. [2] use mobile phones to give AR instructions, Echtler
et al. [7] use a display mounted directly on a welding gun
to provide information about the position of welding spots.
In their work, they are using a tracking system integrated into
the work environment to track the position of the welding gun
at all times. Thereby, it is possible to show exact welding po-
sitions to workers on a display. Moreover, Gavish et al. [16]
compare tablet-based AR instructions to interactive VR in-
structions. They found that AR and VR training requires a
longer Task Completion Time (TCT) than video-based train-
ing. A chest-worn display (CWD) is used by Sakata et al. [29]
as they compared it to an HMD in a remote collaboration as-
sembly scenario. In a user study, they found that the CWD is
more suitable for the task compared to the HMD.

Other work in AR manufacturing can be assigned to two main
categories: presenting instructions on HMDs and presenting
instructions in-situ, i.e. projecting directly at the workplace.
Considering the HMDs, Tang et al. [31] showed that over-
laying the assembly workplace with AR instructions using an
HMD reduces the error rate in assembly tasks by 82% com-
pared to paper-based instructions, instructions on a monitor,
or instructions that are steadily displayed on an HMD. Hen-
derson and Feiner [20] used an HMD to display instructions
for maintenance tasks. They were using the HMD in the
study for approximately 75 minutes. More recently, Zheng
et al. [33] provided further research towards finding the op-
timal position for displaying feedback on an HMD. In their
study, they compared providing instructions using a central
position on the HMD, which is directly in the user’s field of
view against a peripheral position, a hand-held tablet repre-
sentation, and printed instructions. Their results reveal that a
central HMD representation is faster than the peripheral rep-
resentation. Further, they did not find a difference in comple-
tion time between the HMD and non-HMD approaches.

Other systems focused on projecting content directly onto the
workplace. Early versions of in-situ projections were pre-
sented in 2003 by Sakata et al. [28]. They introduced a wear-
able active camera/laser-pointer that a remote expert can con-
trol to provide assembly help. With increasing technology,
an assistive system using a top-mounted projector and a top-
mounted camera was introduced by Bannat et al. [1]. Their
system projects pictorial instructions directly in the worker’s
field of view. The system of Korn et al. [21] also uses pic-
torial in-situ instructions for assembling Lego cars. Kosch et
al. [22] experimented with different error feedback modalities
for assistive systems. Recently, Funk et al. [14] presented in-
situ instructions for the workplace by projecting the contour
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Figure 2. We equipped an assembly line consisting of three workplaces
with our context-aware assistive system for providing in-situ assembly
instructions. Each workplace is equipped with a Kinect v2 depth cam-
era and a projector. Work steps, which are too small to be detected with
the camera, can be proceeded manually using foot pedals.

of assembly parts. Their study had an overall run time of ap-
proximately 60 minutes. They also found that in-situ instruc-
tions are superior to other feedback systems e.g. HMDs [13]
using the GATM benchmark [11]. In another study, Büttner
et al. [5] confirmed these results. Moreover, Marner et al. [23]
compared in-situ projected instructions to instructions that are
shown on a screen. They conclude that in-situ instructions are
faster and lead to fewer errors.

Long-term evaluations of head-mounted displays have so far
only been conducted in an order picking scenario. For exam-
ple, Schwerdtfeger et al. [30] were testing an approach similar
to the attention funnel by Biocca et al. [3] in a two hours study
to get insights about long-term usage of AR in production
environments. Their results show that using a paper-based
baseline, workers made more picking errors and were slightly
slower than using a HMD. However, after using the HMD for
two hours participants reported headaches, problems to fo-
cus on the instructions on the HMD, and needed a 15-minute
break from the HMD. Grubert et al. [17] report another long-
term evaluation of order picking processes with a four-hour
duration. They could reproduce the findings of Schwerdtfeger
et al. Moreover, Tumler et al. [32] analyzed the physical ef-
fects of long-term usage of an HMD in an order-picking sce-
nario. However, they could not find a difference in the users’
strain between HMD and traditional paper picking.

To sum up, related work investigated various approaches for
providing instructions for work tasks. Thereby, mostly head-
mounted displays and in-situ projection approaches were
used. In order picking scenarios, studies lasting from two to
four hours using an HMD revealed problems being accepted
by the users, as they complained about headaches and prob-
lems to focus. However, projection-based systems have not
been studied for longer than approximately one hour, yet. In
this work, we want to evaluate the long-term effects of us-
ing in-situ projected instructions for at least one work day in
industrial assembly scenarios. Thereby, we want to provide
an in-depth analysis considering the different user-groups that
are involved in industrial assembly.

DIFFERENT USER GROUPS
Workers that are employed for industrial manufacturing tasks
can be assigned to one of the following two groups:

Expert workers: There are many expert workers, who are
employed by companies for several years. Usually, these
workers are performing the assembly tasks for many years
and know every detail about the assembly task and every pos-
sible source of errors.

Untrained workers: By untrained workers, we refer to
workers who have assembly experience, but are not famil-
iar with assembling a specific product. According to a sur-
vey of the German Socio-Economic Panel [18], only 5.72%
of the workers that were employed from 1999 to 2011 had
a low qualification. Especially nowadays, where a mismatch
in skills and jobs lead to a skills shortage3, the number of
untrained workers will increase. Moreover, we are currently
experiencing a trend that companies are employing more and
more temporary workers. These workers usually get a con-
tract that lasts only up to 6 weeks. As the temporary workers
are not familiar with the work tasks of the new company, the
number of untrained workers in companies increased over the
last years. Usually, these untrained workers are trained for the
task they need to work on (mostly by an expert worker).

SYSTEM
We introduce an assistive system, which provides context-
aware instructions using in-situ projection to give feedback
to workers during assembly tasks directly. The presented sys-
tem is a continuation of the system presented by Funk et
al. [14]. The system can automatically advance projected
feedback when a correct assembly step was performed or
when a worker picked a correct part from the boxes con-
taining the spare parts. Our system consists of three main
components (see Figure 2): a top-mounted Kinect v2 depth
camera that can detect work steps at the workplace, a top-
mounted projector that can project in-situ feedback directly
at the position where the assembly is performed, and a foot
pedal that enables the worker to manually switch the feedback
if for a work step the depth camera cannot detect the changes
robustly. As the system only uses components that need to
be mounted over and under the workplace, our system can be
added to almost every manual assembly workplace that can
be found in the industry. Usually, a workplace consists of a
fixed assembly area where workers perform assembly steps, a
spare part area where boxes are storing the parts that are used
for the assembly, and a tool area where tools that are used
during the assembly are stored.

To detect when a worker picks a correct part, our system im-
plements a pick-detection. Therefore, the locations of the
boxes to be visually marked in a calibration step once using a
rectangle in the camera image of the top-mounted Kinect v2
(see Figure 3a). The observed area over a box has a height
of 15cm, a length of 5cm and a variable width matching the

3BBC news (last access 03-10-17) - http://www.bbc.com/news/
business-34297368
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(a) (b) (c)
Figure 3. An overview of the different features of the prototype. Our assistive system is capable of (a) detecting when a user pics a part from a box by
observing the depth data of the Kinect v2 above the boxes (b) detecting correct assembly using the depth data, and (c) providing in-situ feedback using
a top-mounted projector.

used boxes’ width. Upon defining the box, the system cap-
tures the depth data and stores a mean depth value of the ob-
served area. Once the area is created, the system compares
the current mean depth values with 30 frames per second to
the stored values. If the worker is picking a part from the box,
the picking results in a change of the depth values in the ob-
served area. To achieve a robust pick-detection, we compare
each depth value inside the box’s rectangle to the mean depth
value that was stored with the observed area. If the change in
the value is above a threshold of 5mm and within the area’s
height of 15cm, we consider the pixel as changed. If 40% of
the pixels are considered changed, the system detects a pick
(see Figure 3a - green rectangle) otherwise, the system does
not detect a pick. The percentage of pixels that need to be
detected to trigger a pick can be adjusted to the size of the
workers’ hands. For workers with smaller hands, a value of
35% is also sufficient.

For detecting when a worker assembled a part correctly at
the assembly area, we implemented an assembly detection.
Therefore, a user has to teach the depth data of a correctly
assembled product to the system in an initial calibration step
for each assembly step. The user has to assemble a part cor-
rectly and then visually mark the position of the assembly
using a rectangle (see Figure 3b). Thereby, the system stores
the depth data of the correctly assembled workpiece. After
the depth data of the correct assembly was stored, the system
continuously compares the stored depth data to the current
depth data inside the area in the rectangle. Thereby, each
pixel is compared to the stored pixel. A pixel is considered
matching if it is within a range of +3mm and -3mm. If at least
80% of the pixels inside the rectangle are considered match-
ing, the system triggers a correct assembly of the part (see
Figure 3b - green rectangle). Otherwise, the system shows
a red rectangle and does not trigger the next work step. The
threshold of 80% was determined empirically and was pro-
viding a good accuracy for the used tasks. When choosing a
higher threshold, a better accuracy can be achieved, however,
if the threshold is too high a correctly assembled part might
not be detected anymore because of noise in the sensor. With
our system, we are able to robustly detect the assembly of
parts that are 1cm×1cm×1cm. Parts that are smaller, cannot
be detected accurately in the distance of 1.6m above the as-
sembly area using a Kinect v2 due to its resolution and noise
in the sensor. Therefore, we included a foot pedal (see Fig-

ure 2) with two buttons that enables the worker to advance
the feedback of the system forward and backward in case the
assembled part is too small to be detected automatically.

Our assistive system is further able to create workflows that
consist of multiple work steps. For example, a work step
could be picking a part from a box. In that case, the box
is highlighted using a green light. If the work step is assem-
bling a picked part, the system highlights the position where
the part has to be assembled using a contour representation of
the part, which has to be assembled (c.f. [10]). If a part has
to be removed the part is blinking green. We refrained from
using a red color as red usually indicates that an error was
made. In case the system is detecting that a worker picks a
part from a wrong box, the system highlights the wrong box
with a red light for 2.5 seconds. In an initial calibration step,
the administrator needs to define the order of the work steps
once by defining a so-called workflow. If a workflow reached
the last step, the system restarts the workflow from the begin-
ning after waiting 5 seconds.

A STUDY WITH EXPERT AND UNTRAINED WORKERS
We evaluate the long-term effects of in-situ instructions at the
assembly workplace for expert workers and untrained work-
ers. Therefore, we set up our system at the factory buildings
of a major car manufacturing company, where we assembled
cars’ engine starters. We conducted two experiments, which
follow the same experiment design. The only difference be-
tween the experiments were the participants: expert workers
and untrained workers.

Design
We considered a repeated measures design with the availabil-
ity of in-situ instructions as the only independent variable. As
dependent variables, we were measuring the TCT, the num-
ber of errors, and the NASA-TLX [19]. We did not counter-
balance the order of the conditions, as we wanted to measure
the initial effect of the in-situ instructions on a worker. The
experiment setup is constructed on an assembly line. Thus,
the errors and TCT are measured for the whole group of three
workers.

Apparatus and Setup
For the study, we equipped the three workplaces of a U-
shaped assembly line with our assistive system (see Figure
2). The assembly line is used to produce cars’ engine starters



and was deployed at a major car manufacturing company. We
especially created the assembly line for conducting this study.
The way of assembling the engine starters using a U-shaped
assembly line differs from the assembly process that the car
manufacturing company uses to assemble the engine starters.
We deliberately introduced a new assembly line to create a
new setting for both expert workers and untrained workers.
Further, we designed a new workpiece carrier, which holds
the assembled product during assembly. It was designed in a
way that every performed work step can be seen by the top-
mounted Kinect v2

The assembly line consists of a roller conveyor on which
workpiece carriers can be transferred between the work-
places. For the study, we used seven workpiece carriers that
can be transferred between the workplaces on the U-shaped
assembly line (see Figure 2). The transferring of the work-
piece carriers has to be done manually. In the study, the
workpiece carriers were transferred between the workplaces
counterclockwise. At each workplace, a pneumatic clamp
was firmly mounting the workpiece carrier at the exact same
position that the Kinect v2 is able to perform the assembly
detection.

The three workplaces are part of one assembly line to assem-
ble engine starters. Therefore, the workplaces are dependent
on each other. We divided the tasks that are performed at
each workplace in a way that workers need the same amount
of time at each workplace. For workplace 1 (WP1), the task
consisted of 18 work steps: twelve could be automatically
detected, six had to be advanced manually, because the parts
were too small. Workplace 2 (WP2) consisted of twelve work
steps, thereby three had to be advanced manually, and nine
were detected automatically. Finally, workplace 3 (WP3)
consisted of fourteen work steps: four had to be advanced
manually and ten were detected automatically. However, if
one worker needs more time, the next worker in line needs
to wait for the previous workplace to finish. To introduce a
buffer in case a workplace needs more time than usual, we
use seven workpiece carriers at the assembly line.

Procedure
As we conducted the study at a car manufacturing company,
we had to stick to the company’s breaks and hours of work.
Thus, a workday consisted of four slots: from 7.45am till
8.45am, from 9am till 11.45am, from 12.30pm till 1.45pm,
and from 2pm to 3pm. Accordingly, one workday consists of
assembling 360 minutes, which is exactly 6 hours per day. As
the workers should learn the whole assembly process on each
of the three workplaces (WP1, WP2, WP3), all workers had to
work on each of the three assembly workplaces in the assem-
bly line. We iterated the workplaces in a counter-clockwise
way after each break, resulting in iterating 4 times per work-
day. As the assembly line is built in a U-shape, after the final
step was performed at WP3, a study assistant removed the as-
sembled engine starter from the workpiece carrier, put it into
a container, and counted the produced starters. Afterwards,
the assistant moved the empty workpiece carrier in reach of
WP1 again. The errors were counted in a post-assembly qual-
ity control. Thereby a quality inspector checked the engine

starters for assembly errors. After three days of assembling,
we conducted a group interview where we invited the partic-
ipants and asked them for their opinion about using in-situ
instructions at the workplace. To measure the learning effect,
we then assembled the car’s engine starter using the same as-
sembly line for 3 days without using instructions. We started
with the procedure with the group of untrained workers and
then repeated the procedure for the expert workers. However,
due to time limitations of the car manufacturing company,
we had only two instead of three days for the condition as-
sembling without instructions with the expert workers. This
results in a study run time of 11 workdays.

Participants
We recruited 3 expert workers and 3 untrained workers (all
male), who all are employees of a major car manufacturing
company. The expert workers were on average 43.34 years
old (SD = 4.49 years) and the untrained workers were on av-
erage 45.67 years old (SD = 12.65 years). All expert workers
had over a year of experience in assembling the engine starter.
The untrained workers had experience in working on assem-
bly tasks but did not assemble an engine starter before. All
workers were not familiar with the workpiece carrier and the
U-shaped assembly line as it was especially designed for this
experiment.

Ethical clearance for conducting this study was provided by
the German Federal Ministry for Economic Affairs and En-
ergy and the industrial council of the car manufacturing com-
pany, where we conducted the study. Further, all participants
gave written consent to volunteer in participating in this study.

Quantitative Results
We report the results of the study for both expert workers and
untrained workers separately. For both user groups, we statis-
tically compared the TCT, number of errors, and NASA-TLX
between the two conditions using a one-way ANOVA.

Expert Workers
Considering the TCT, the expert workers were faster with-
out instructions with an average of 74.03s (SD = 11.63s) per
produced part compared to during the learning phase using
in-situ instructions, which resulted in an average of 109.40s
(SD = 31.96). The ANOVA revealed a significant difference
between the approaches F(1, 6) = 8.428, p = .027. The effect
size shows a large effect (η2 = .584). A graphical representa-
tion is depicted in Figure 4.

When comparing the NASA-TLX between the two condi-
tions, the average NASA-TLX score for the expert workers
was 74.34 (SD = 12.25) using the in-situ instructions and
72.67 (SD = 4.98) without instructions. A statistical com-
parison using an ANOVA test did not reveal a significant dif-
ference between the conditions (p > .05). A graphical repre-
sentation of the average TLX scores is depicted in Figure 5.

As the assembly errors that were made during the study were
determined in a post-process, only descriptive statistics can
be reported for the number of errors. However, the expert
workers did not make any assembly errors both with and
without the in-situ instructions.



Figure 4. The average time per produced part for expert workers and
untrained workers using in-situ instructions and assembling without in-
structions. Error bars depict the standard error.

Untrained Workers
When considering the average time to produce a part, the un-
trained workers were faster after the learning phase without
using instructions with an average of 88.65s (SD = 12.41s)
compared to 113.62s (SD = 10.14s) during the learning phase
using in-situ instructions. The ANOVA revealed a signifi-
cant difference between the conditions F(1, 10) = 23.621,
p = .001. The effect size estimate shows a large effect
(η2 = .703). The results are depicted in Figure 4.

The post-process analysis of errors revealed that the group
of untrained workers made 5 errors while working with the
in-situ instructions. When afterwards working without the
instructions, they did not make any assembly errors.

We further compared the NASA-TLX between the two condi-
tions for the untrained workers. Using the in-situ instructions,
the questionnaire resulted in an average score of 40.67 (SD
= 14.34) and an average score of 31.67 (SD = 14.70) with-
out instructions. A statistical comparison using the ANOVA
did not reveal a significant difference between the conditions
(p > .05). A graphical representation of the average TLX
scores is depicted in Figure 5.

Between User-Groups
Considering expert workers and untrained workers as dif-
ferent user groups, we statistically compare the results as a
between groups experiment. We use a one-way ANOVA to
compare the TCT, number of errors, and TLX score when us-
ing in-situ instructions and assembling without instructions
afterwards.

When comparing the TCT for assembling the engine starter
while using in-situ instructions, the ANOVA did not find a
significant difference between the expert workers and the un-
trained workers (p > .05). However, when comparing the
TCT for assembling the engine starter without using instruc-
tions, the ANOVA found a significant difference between the
expert workers and the untrained workers F(1, 6) = 6.589,
p = .043. The effect size estimate shows a large effect
(η2 = .523).

We further compared the average NASA-TLX score between
the expert workers and untrained workers. However, the
ANOVA test did not reveal a significant difference for using
the in-situ instructions (p > .05) and for assembling without
instructions (p > .05).

Figure 5. The average NASA-TLX score using in-situ instructions and
assembling without instructions. Error bars depict the standard error.

Qualitative Results
For better understanding the effects of the in-situ instructions
on both worker groups, we provide detailed results from the
interviews that were conducted after each condition. Thereby
P1-P3 are from the untrained workers group and P4-P6 are
expert workers.

Participants disliked that the workplaces that were used in
the study differed from the workplaces they were used to.
Especially that the workplace constructed for the study was
designed in a U-shape as “[they] had to wait for the pre-
vious worker to finish” (P2). However, after working with
the in-situ instructions for a longer time, a participant stated
that “[he] got used to the system” (P1). One participant told
us that “working with the in-situ instructions was relaxing”
(P3). On the other hand, participants perceived the in-situ in-
structions as “an additional task, which required [them] to
pay extra attention to the colors” (i.e. not causing red error
feedback). Sometimes participants also were “irritated be-
cause of the triggered red light” (P5) that indicated a wrong
pick. Using the in-situ instructions while working was per-
ceived as “working twice as much” (P2) because “manually
advancing the instructions with the foot pedal lead to a higher
load on the left foot” (P6). On the other hand, the workers
liked that they were supported during their tasks because “the
system shows us how the order of the work steps has to be
performed” (P1). However, one participant stated that “[he]
felt like a robot” (P6). Overall, most participants stated that
“[they] wouldn’t want to work with the system every day” but
it “would be great to learn new tasks with the system.”

DISCUSSION
Considering the expert workers, assembling with in-situ in-
structions resulted in a significantly higher TCT than assem-
bling without instructions. The workers told us in the inter-
views that this was mainly because the in-situ instructions
were distracting them. However, regarding the perceived cog-
nitive workload that was measured with the NASA-TLX, we
could not detect a significant difference between using in-situ
instructions and assembling without instructions. Another ex-
planation for the better performance without the in-situ in-
structions could be that we used the in-situ instructions as the
first condition to learn the task. After assembling three days
with the in-situ instructions, the expert workers might have
also gotten used to the new assembly line.



As we did not counterbalance the order of the conditions and
used the in-situ projection condition to teach the assembly,
we can see that after using the in-situ instructions for three
days, the untrained workers were able to assemble the prod-
uct significantly faster and without making any error. The
workers told us that at first, the system was very helpful for
them to learn the assembly steps. However, they told us that
after assembling with the in-situ instructions for a while, they
were distracted by the instructions. Therefore, we believe
that the time that untrained workers were using the in-situ
instructions to learn how to assemble the engine starter was
too long. Regarding the NASA-TLX score, we could not find
a significant difference between the approaches. Informed by
the untrained workers’ answers in the interviews, we believe
that a learning an assembly task using in-situ instructions is
a good alternative to traditional ways of learning. However,
finding the right duration of using in-situ instructions in or-
der to learn a task has not been found yet. This could be an
interesting problem to investigate in future work.

When comparing the NASA-TLX score of expert workers
and untrained workers, we found that the expert workers per-
ceived a higher cognitive workload for both using in-situ in-
structions and assembling without instruction compared to
the untrained workers. We believe that this is because the
expert workers were used assemble the engine starters in a
single assembly workplace. As for the study we especially
built an assembly line, it might cause waiting times for the
other workers. We believe that this newly introduced depen-
dency had an influence on the perceived cognitive workload
of the expert workers.

From the experiment with untrained workers, we learned that
in-situ projected instructions could transfer knowledge about
the new workflow to the workers. However, using in-situ
instructions for too long might result in slowing down the
worker. We believe that including a better adaptiveness of
the instructions that focuses on the current skill of the worker
would improve the system. We believe that there has to be
a point in time where assistance for untrained workers is not
beneficial anymore. Finding this point in time could be inter-
esting for future work.

To sum up the findings for the expert workers and the un-
trained workers, the in-situ instructions slowed them down in
their work. However, the qualitative statements indicate that
the untrained workers liked learning work steps using the in-
situ projection of our assistive system.

CONCLUSION
In this work, we analyzed the long-term effects of context-
aware in-situ instructions on two different groups of work-
ers that can be found in the industry: expert workers and un-
trained workers. We deployed our assistive system using in-
situ projection in an assembly hall. Through user studies in
an industrial setting, we provide results of assembling with
in-situ instructions. During the study, each participant assem-
bled at least three full work days using in-situ projected in-
structions. To the best of the authors’ knowledge, this is the
first study exploring such long-term effects.

The results indicate that for untrained workers, in-situ in-
structions are useful during the learning phase. In our study,
the untrained workers could assemble products significantly
faster and without making errors after 3 days of learning the
assembly task using in-situ projection. However, while learn-
ing the assembly task, the in-situ instructions slow the work-
ers down in their assembly speed. We especially can see this
effect for the expert workers, who already know the assembly
task. As for the expert workers, the in-situ instructions slow
down the Task Completion Time and increase the perceived
cognitive load.

Considering untrained workers, we found that using in-situ
instructions for 3 days to learn a task is too long. Therefore,
our future work will address finding the optimal duration for
using in-situ instructions for learning.
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Böckelmann, Lutz Schega, Anke Huckauf, Mario
Urbina, Michael Schenk, Fabian Doil, and Johannes
Tumler. 2010. Extended investigations of user-related
issues in mobile industrial ar. In ISMAR’10. IEEE,
229–230.

18. Thomas Haipeter and Christine Slomka. 2014.
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