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ABSTRACT

With the opportunity to customize ordered products, assembly
tasks are becoming more and more complex. To meet these
increased demands, a variety of interactive instruction systems
have been introduced. Although these systems may have a
big impact on overall efficiency and cost of the manufacturing
process, it has been difficult to optimize them in a scientific
way. The challenge is to introduce performance metrics that
apply across different tasks and find a uniform experiment
design. In this paper, we address this challenge by proposing
a standardized experiment design for evaluating interactive
instructions and making them comparable with each other.
Further, we introduce a General Assembly Task Model, which
differentiates between task-dependent and task-independent
measures. Through a user study with 12 participants, we
evaluate the experiment design and the proposed task model
using an abstract pick-and-place task and an artificial industrial
task. Finally, we provide paper-based instructions for the
proposed task as a baseline for evaluating Augmented Reality
instructions.

CCS Concepts
*Human-centered computing — HCI design and evalua-
tion methods;

Author Keywords
Evaluation, Experiment Design; Benchmark; Instruction
Giving; Remote Collaboration; Augmented Reality.

INTRODUCTION

Providing task instruction and imparting task-specific knowl-
edge have long been important topics in HCI [4]. Today these
are gaining particular practical importance in the area of as-
sembly tasks. These tasks are more complex and more varied,
and hence more demanding for workers. To overcome the
complexity and to cognitively support the workers, assistive
systems have been introduced [1, 5, 13]. We distinguish three
main categories of technology-enabled task instruction and
learning systems. First, remote collaborative work systems
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where e.g. a technician is in the field and is guided by an re-
mote expert [8], Second Virtual Reality (VR) learning systems,
e.g. for enabling risk-free learning in safety-critical tasks [2].
And third, context-aware stationary assistive systems that en-
able learners to get instructions for a specific manufacturing
task [6]. Usually those systems use Augmented Reality (AR)
technology for providing instructions, e.g. by augmenting a
workplace with a projector [1].

Although many different approaches for teaching assembly
tasks have been proposed, comparing them with each other is
very cumbersome. This is mainly because each proposed type
of instruction introduces a different reference task. Therefore,
comparing instructions across different papers is nearly im-
possible because the used measures e.g. task completion time
or number of errors, are fask-dependent and cannot be easily
compared across different scenarios. In order to address this
problem, better models are needed — and a basic precondition
for the construction of general models is a means for compar-
ing the performance of different systems. Other areas in the
field of HCI have already recognized the need for standardized
tasks. For example, for evaluating text-entry techniques, the
phrase set of MacKenzie et al. [11] is considered the stan-
dardized task. However, there is still no standardized task for
providing instructions for assembly tasks. Therefore there is a
need for a shared benchmark to allow the community to better
compare system performance, and advance the state-of-the-art
more rapidly.

To address this need, our paper provides the following two con-
tributions: (1) We introduce a General Assembly Task Model
consisting of task-dependent and task-independent measures,
and (2) propose a benchmark experiment design consisting
of two cheap and easily reproducible assembly tasks. Fur-
ther, we provide paper-based instructions for the two assembly
tasks that can be used by other researchers as a baseline for
comparing new approaches.

RELATED WORK

Augmenting the workplace with AR instructions has been
the topic of many research projects. Caudell et al. [4] first
described displaying AR instructions for assembly processes
in 1992. They use a manufacturing task inspired by aircraft
manufacturing where the user has to drill holes. Their head-
mounted display (HMD) indicates drilling positions and dis-
tances. Moreover, Zhou et al. [16] use a projector-based AR
approach for visualizing welding spots. In their study, they
use a metal car body part as welding task. Henderson et
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al. [10] use three-dimensional arrows and text-labels to in-
struct a worker in maintaining an armored personnel carrier
turret. They display the instructions on a HMD. To interact
with the instructions the user operates a wrist-worn controller
that advances the feedback. With the proliferation of Google
Glass, Zheng et al. [15] compared AR approaches for provid-
ing instructions using a centered HMD, a peripheral HMD,
a tablet, and printed instructions. In their study they use a
car maintenance task — checking a car’s oil level and chang-
ing a light bulb. Another approach is demonstrated by the
TeleAdvisor system [8], which uses a camera projector system
to enable a remote helper to give instructions to an on-site
learner. They use a task where the workers are connecting
cables at a TV setup scenario. Furthermore, Gauglitz et al. [7]
use AR instructions for remote collaboration in a Boeing 737
cockpit.

Previous research recognized the need for simplifying manu-
facturing tasks to compare instructions. Tang et al. [13] ran a
study comparing printed manuals, computer assisted instruc-
tions, and AR-instructions using a HMD. They introduced an
abstract pick-and-place task using Lego Duplo bricks. Both
Sakata et al. [12] and Funk et al. [6] also use Lego Duplo
bricks for giving instructions for assembly tasks. Sakata et
al. [12] use a remote collaboration scenario whereas Funk et
al. [6] provide projected in-situ feedback at a workplace for
cognitively impaired workers. However, the works by Funk,
Sakata, and Tang were using different assembly tasks.

A GENERAL ASSEMBLY TASK MODEL

All research projects mentioned above provide ways of giving
instructions to workers. However, each presented approach
uses its own assembly task. This makes the different instruc-
tions very difficult to compare against each other, as each new
assembly task introduces a different complexity and different
times to assembly assemble a product. Unfortunately, most
research only reports the total time that workers need to as-
semble a product, which is only one fask-dependent measure.
This problem in comparing different instruction approaches
with one another could be solved by finding task-independent
measures or by standardizing experiments.

In order to find task-independent measures, we analyzed the
tasks that were used in related work and constructed an equa-
tion which can be applied to each presented task. As related
work identified the four relevant component actions for assem-
bly tasks to be reach, grasp, move position, and release [3],
we abstract the basic actions to high-level actions that require
cognitive effort and are affected by an instruction. Thus, we
suggest the General Assembly Task Model (see Figure 1),
which calculates the total time a workers needs to assemble
a product #4 by measuring four sub-times (f;ocare_part tpick-
tlocate,pos’ and [assemblex)~

lrotal =1 ([locate,part + tpick + tlocale,pas + lassemblq)

Figure 1. The equation for calculating the assembly time according to
the General Assembly Task Model.

Where 7 is the number of assembly steps required. The time
to locate the bin in which the next part is stored is #jocare_pars-

It includes both the cognitive time to process the feedback and
the time to move the arm to the target bin. The latter can be
treated as a constant value as workplaces are usually designed
in a way that the distance to pick parts is within an arms reach
[14]. The time that a worker needs to pick a part is #p;c. If
the specific task does not include picking a part, #ocate_part
and 7, are 0. fjocare_pos 18 the time that the worker needs
to locate the assembly position of the part that the worker is
currently holding or the part that the worker needs to modify.
Finally, t45sempie, 1s the time needed by the worker to perform
the assembly task associated with a specific part x.

task-dependent measures: #,smple, 1S task-dependent since
different parts might take more or less time to assemble. It
is also a measure for instruction quality, as instructions can
communicate how to use tools during an assembly step, how
to correctly assemble a part, and which details to focus on.
tpick 18 a task-dependent measure, as it depends on the size
and weight of the part that needs to be grasped. However,
we don’t consider 7, to be a measure for instruction quality
since grasping is usually not instructed.

task-independent measures: We consider focare_parr and
tiocate_pos s indicators for the task-independent instruction
quality, as they quantify the cognitive effort that the worker
needs to transfer the given instructions to the workplace.

REQUIREMENTS FOR A STANDARDIZED TASK

In order to find a standardized assembly task for instruction
giving, we analyzed tasks that were used in previous work and
identified two categories of tasks. Some related approaches [1,
6, 12, 13] recognized Lego Duplo as abstraction for industrial
pick-and-place tasks. The major benefit of such an abstract
pick-and-place task is that the time that the worker needs is
mainly tlocate,parl and tlocale,posv where Tassembley is relatively
low, as the brick is just placed at a position and no further
assembly is required. On the other hand, related work uses
specific industrial assembly tasks [4, 10, 15, 16]. Compared
to a pick-and-place task, ?45empie, 15 much higher when using
industrial assembly tasks. As the most time is used to perform
the assembly itself, the #;ocare_parr and tocare_pos ONly account
for a small part of #,,,;. Overall, we recognize two different
types of tasks, pick-and-place tasks and industrial assembly
tasks. Thereby, each work step belonging to either type con-
sists of one or many of the following three actions: picking
items, placing items, and assembling them.

To sum up the requirements for a standardized task for com-
paring assembly instructions with one another, we define the
following four criteria for designing a uniform assembly task:

o cheap to setup: the proposed task has to consist of off-the-
shelf components that are affordable and easy to purchase.

e easy to replicate: the assembly tasks have to be described
in a way that they are easily replicable.

e representative: the tasks have to cover the three main ac-
tions that can be found in assembly scenarios in the industry
(i.e. picking parts, placing parts, and assembling parts).

e easy to scale up: the number of working steps have to be
easily changeable without changing the nature of the task.
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Figure 2. The apparatus of the duplo task: the bricks used for the task
are stored in blue picking bins and are arranged as depicted. The plate
is in front of the picking bins.

A UNIFORM EXPERIMENT DESIGN

Inspired by approaches from prior work, we propose a uniform
experiment design as a benchmark for assembly instructions
that fulfills the requirements mentioned above. We implement
two assembly tasks which follow the proposed design: A pick-
and-place task using Lego Duplo, and an industrial task that
requires a precise assembly of components.

The benchmark follows a repeated measures design with the
number of assembly steps as the only independent variable.
We consider tasks with 4, 8, 16, and 32 assembly steps for
both tasks. As dependent variables, we suggest measuring the
assembly time according to the General Assembly Task Model
(GATM) (tlncate,part inck ,tl()cate,pnsa z‘szssemhle)c)a the errors that
were made during assembly, and the perceived cognitive load
using the NASA-TLX [9] questionnaire. As the time and
errors are dependent on the number of assembly steps, we
normalize all times and errors by dividing them by the number
of assembly steps.

In order to measure the exact assembly times, the experiment
has to be recorded and evaluated in a post-analysis. The time
tocate_partr 18 measured from the moment the instruction is
shown until the hand of the worker is in the correct bin. Sec-
ond, 2y is the time the participants’ hand is inside the bin.
Next, #/ocare_pos 18 the time from when the hand leaves the bin
until the part arrives in the right location for the assembly
task. Finally, 45embie, 1S the time at the appropriate site to
perform the assembly task. Further, the order of the number
of assembly steps should be counterbalanced according to the
Balanced Latin Square.

Duplo bricks

The first task is an abstract pick-and-place task using Lego
Duplo bricks. For the task, we equip a workplace with a
26x26 green Lego Duplo plate (see Figure 2). The Duplo
bricks that are used for the assembly are stored in 8 picking
bins that are arranged in a 2x4 grid. The exact arrangement
and content of the bins is depicted in Figure 2. We use 8
different Lego Duplo bricks (size 2 x2: orange, yellow, blue,
red, white, lime; size 4x2: yellow, and green).

Figure 3. The apparatus of the assembly task. The assembly parts are
stored in blue picking bins (A), the workpiece carrier (B) is placed in
front of the boxes. The screws are aligned vertically that the worker can
use both hands to for assembling the nuts and washers.

Artificial industry task

In the industry, assembly pieces are usually manufactured on
so called workpiece carriers, which hold the piece in a position
that facilitates assembly. Because these workpiece carriers
are product-dependent, we propose creating an artificial work-
piece carrier from a wooden plate and screws.

We use a 30cmx24cm wooden plate. In the middle of the
plate we drill holes to fit three types of metric screw threads':
M5, M2, and M8 . All holes have a distance of 6cm between
them, resulting in an (x/y) position of M5(15/6), M2 (15,12),
and M8 (15,18). The carrier is depicted in Figure 3 (B). The
parts to assemble are stored in 8 picking bins that are arranged
in a 2x4 grid. The position of the different parts is depicted
in Figure 3. We use washers and nuts for each metric thread.
Additionally, we use M10 nuts and washers as distracting
elements.

Baseline: paper-based instructions

As an easy-to-reproduce baseline, we took pictures of each
work step from the worker’s perspective. In the Lego Duplo
task, we displayed the brick to pick next in the upper left
corner and highlighted the position of the brick to place using
a red arrow. In the industrial assembly task, we highlighted
the position of the nut or washer that needs to be picked next
using a red rectangle. Further we highlighted the position to
assemble the part using a red circle. The pictorial instructions
can be downloaded by other researchers from our website?.

Evaluation

To evaluate the GATM and provide baseline values for our
suggested experiment, we conducted a user study with 12 par-
ticipants (6 male, 6 female). The participants were in the age
range from 22 to 31 (M=24.83, SD=3.15) and were recruited
via a mailing list. Participants were undergraduate students
with various majors. The study took approximately 30 minutes,
including assembly tasks and filling out questionnaires.

SO 68-1:1998 - http://www.iso.org/iso/catalogue_detail.
htm?csnumber=3707 (last access 08-15-15)
ZPaper  instruction  download:
ar-instruction-benchmark

http://www.hcilab.org/
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#steps 4 8 16 32 #steps 4 8 16 32
Hocate_part 1.84 (1.52) 2.22(1.57) 2.19(1.13) 2.29(1.36) Hocate_part 228(1.09) 234(1.61) 2.14(1.46) 2.15(1.46)
Lpick 0.86 (0.43) 0.86(0.39) 0.87(0.42) 0.97 (0.63) Lpick 1.31(0.58) 1.48(0.81) 1.52(0.99) 1.60 (1.09)
Hocate-pos 1.40 (1.07) 1.26(1.05) 1.17(0.48) 1.19(0.75) Hocate-pos 1.15(0.63) 1.28(0.61) 1.29(0.91) 1.35(0.85)
tassemble x 1.30(1.63) 0.95(0.43) 0.96(047) 0.96 (0.50) tassemble x 6.23 (7.06) 6.16(7.03) 5.83(9.02) 6.01 (9.61)
# errors 0.17 (0.58)  0.33(0.65) 0.33(0.65) 0.5(0.52) # errors 0.08 (0.28) 0.16(0.39) 0.08 (0.29) 0.92(1.24)

Table 1. Average time in seconds for the task-independent and task-
dependent measures for the Lego Duplo task and the average number
of errors made. Standard deviation is depicted in parenthesis.

We statistically compared the average time for f,embie, > picks
tocate_part> A0 tocate_pos» the number of errors, and the NASA-
TLX between the two proposed tasks using a one-way repeated
measures ANOVA. The average times are depicted in Table
1 for the Lego Duplo task, and in Table 2 for the industrial
assembly task.

The mean time to locate a part f;ocqre_pars OVer all step-sizes
was 2.14s (SD=0.88s) for the Lego Duplo task and 2.17s
(SD=0.47s) for the industrial assembly task. A repeated
measures ANOVA did not reveal a significant difference
(p > 0.05). Further, we compared #jocare_parr Within each task
across the different step sizes. However, the test did not find a
statistically significant difference between the two tasks (all
p > 0.05).

The average time to pick a part ¢, over each step size
was 0.89s (SD=0.20s) for the Lego Duplo task and 1.46s
(SD=0.34s) for the industrial assembly task. A repeated mea-
sures ANOVA showed a significant difference for #,,.; between
the two tasks F(1,11) =33.22, p < .001. Further, we com-
pared ;4 within each task across the different step sizes.
However, a repeated measures ANOVA did not find a signifi-
cant difference for both tasks (all p > 0.05).

The average time to find the location of a picked part #;ocare_pos
over each step-sizes was 1.25s (SD=0.29s) for the Lego Duplo
task and 1.25s (SD=0.35s) for the industrial assembly task. A
repeated measures ANOVA did not reveal a significant differ-
ence (p > 0.05). We further compared #/y¢41¢_pos Within each
task across the different step sizes. For the Lego Duplo task,
we did not find a significant difference between the different
step sizes (p > 0.05). Additionally, we compared the different
step-sizes within the tasks using a one-way repeated measures
ANOVA. Mauchly’s test showed that the sphericity assump-
tion was violated (x2(5) =12.927, p = .025). Therefore, we
used the Greenhouse-Geisser correction to adjust the degrees
of freedom (¢ = .62). Interestingly, we found a significant dif-
ference between the step sizes in the industrial assembly task
F(1.887,20.753) = 3.952, p = 0.037. Pairwise comparisons
revealed a significant difference between 4 and 8 steps.

The average time to assemble a part f5gempre, OVer all step
sizes was 1.04s (SD=0.29s) for the Lego Duplo task and 6.04s
(SD=1.27s) for the industrial assembly task. A repeated mea-
sures ANOVA revealed a significant difference for ,55empie,
between the two tasks F(1,11) = 212.32, p < 0.001. We
compared f455empie, Within each task across the different step
sizes. However, a repeated measures ANOVA did not find a
significant difference for both tasks (all p > 0.05).

Table 2. Average time in seconds for the task-independent and task-
dependent measures for the industrial task, and the average number of
errors made. Standard deviation is depicted in parenthesis.

We also compare the number of errors made across the differ-
ent tasks. The mean number of errors made across the four
different levels of complexity was 1.33 (SD=1.67) for the Lego
Duplo task, and 1.25 (SD=1.54) for the industrial assembly
task. The analysis did not reveal a significant difference in the
mean number of errors between the tasks (p > 0.05). Further,
we compared the number of errors within each task across the
different step sizes. The number of errors for each complexity
is shown in Table 1 for the Lego Duplo task, and in Table 2
for the industrial assembly task. However, the ANOVA did
not reveal a statistically significant difference (all p > 0.05).

Considering the perceived cognitive load according to the aver-
age NASA-TLX score [9] the Lego Duplo task reached a score
of 33.16 (SD=15.52), whereas the industrial assembly task
reached a score of 43.91 (SD=16.77). The analysis revealed a
significant difference regarding the perceived cognitive load
between the two tasks F(1,11) = 13.05, p = 0.004.

DISCUSSION

The results of the study show that both proposed task-
dependent measures tqsemple, and #p; are significantly dif-
ferent between the two tasks. Accordingly, the two task-
independent measures tjocare_pars A tocare_pos Were not signif-
icantly different between the tasks using paper-based instruc-
tions. The results support our proposed GATM.

Further, we found a significant difference in #,care_pos between
the 4 and 8 steps industrial assembly tasks. We believe that
this difference occurred because participants worked at a faster
pace when assembling the 4 steps scenario. One participant
(P8) stated that "[He] wanted to finish very quickly when
seeing that the instruction only consists of a little number
of steps.” For all other measures and all other step-sizes the
analysis did not find a significant difference. This suggests
that the two assembly tasks and the used dependent variables
are step-size independent and that experiments consisting of §
work steps might be sufficient.

CONCLUSION

In this paper, we introduce the General Assembly Task Model
using fask-dependent and task-independent measures and pro-
vide a uniform experiment design as a benchmark for eval-
uating assembly instructions. Further, we suggest two tasks
that are cheap to build, easily reproducible, and covering most
tasks that are found at assembly workplaces in industrial set-
tings. We provide a paper-based baseline for the two proposed
tasks that can be downloaded by other researchers. We believe
that introducing a uniform benchmark will make different
instruction approaches more comparable to one another.
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