
Computers in Human Behavior 175 (2026) 108779 

A
0

 

Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier.com/locate/comphumbeh  

Full length article

AI makes you smarter but none the wiser: The disconnect between 

performance and metacognition
Daniela Fernandes a ,∗, Steeven Villa b , Salla Nicholls a, Otso Haavisto a , Daniel Buschek c , 
Albrecht Schmidt b , Thomas Kosch d , Chenxinran Shen e , Robin Welsch a

a Aalto University, Espoo, 02150, Finland
b LMU Munich, Munich, 80539, Germany
c University of Bayreuth, Bayreuth, 95440, Germany
d HU Berlin, Berlin, 10099, Germany
e Independent Researcher, Vancouver, Canada

A R T I C L E  I N F O

Keywords:
Human–AI interaction
Human-centered computing
Metacognition
Overconfidence
Generative AI

 A B S T R A C T

Optimizing human–AI interaction requires users to reflect on their performance critically, yet little is known 
about generative AI systems’ effect on users’ metacognitive judgments. In two large-scale studies, we investigate 
how AI usage is associated with users’ metacognitive monitoring and performance in logical reasoning tasks. 
Specifically, our paper examines whether people using AI to complete tasks can accurately monitor how well 
they perform. In Study 1, participants (N = 246) used AI to solve 20 logical reasoning problems from the 
Law School Admission Test. While their task performance improved by three points compared to a norm 
population, participants overestimated their task performance by four points. Interestingly, higher AI literacy 
correlated with lower metacognitive accuracy, suggesting that those with more technical knowledge of AI 
were more confident but less precise in judging their own performance. Using a computational model, we 
explored individual differences in metacognitive accuracy and found that the Dunning–Kruger effect, usually 
observed in this task, ceased to exist with AI use. Study 2 (N = 452) replicates these findings. We discuss how 
AI levels cognitive and metacognitive performance in human–AI interaction and consider the consequences 
of performance overestimation for designing interactive AI systems that foster accurate self-monitoring, avoid 
overreliance, and enhance cognitive performance.
1. Introduction

Humans have always used technologies to augment their cognitive 
abilities (Alexandre e Castro, 2024; Clark, 2008; Khettab, 2019). Recent 
advances have aimed to improve human performance and productivity 
in a range of contexts (Hou et al., 2024; Perera, 2024; Wang et al., 
2020; Zulfikar et al., 2024). While there is evidence for an improve-
ment in human performance with AI (Bansal et al., 2021; Steyvers 
et al., 2022; Zulfikar et al., 2024), the integration of AI also brings 
challenges related to how users perceive, interact, and rely on these 
systems. Specifically, it is crucial to understand how AI influences 
individuals’ ability to accurately assess their own competence and make 
informed decisions, particularly in situations where overconfidence or 
underestimation determines the success and efficacy of AI applications 
in real-world settings (Buçinca et al., 2021; Fleming, 2024). A core 
issue within this scope is the impact of AI on human metacognition 
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— the ability to monitor and regulate one’s cognitive processes. From 
a psychological perspective, people commonly rely on AI to boost their 
cognitive processes, raising fundamental questions about how people 
perceive their augmented performance when collaborating with AI, 
and whether they remain aware of potential errors (Buçinca et al., 
2021; Fleming, 2024). Fundamental biases, such as overtrust and over-
reliance, impair performance (Inkpen et al., 2023) up to the point that 
the interaction decreases overall performance as compared to having 
no AI at all (Bastani et al., 2024; Vaccaro et al., 2024).

Psychological research on metacognition has shown that people 
typically estimate themselves to be better than average (Brown, 1986), 
also called the ‘‘better-than-average effect’’ (see Zell et al. (2020)). 
In the context of AI, people believe AI improves performance (Kloft 
et al., 2024), that AI predictions outperform professionals (Shekar et al., 
2024) and hope AI will improve their lives (Cave & Dihal, 2019). 
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Research offers some scattered evidence of deficiencies in metacogni-
tive monitoring: users are largely unaware of their performance and 
their performance improvement with AI. Concretely, when using AI 
systems, users tend to overestimate their benefits, even when using 
a sham AI system (Kloft et al., 2024; Kosch et al., 2023; Villa et al., 
2023). Moreover, when studying with AI support, people are unaware 
of their learning process, which leads to low exam scores. However, 
accurate metacognitive monitoring is crucial for optimizing human–
AI interaction (HAI). Inaccurate evaluation of human–AI composite 
performance (Engelbart, 1962) can lead to an overreliance on the 
system, resulting in suboptimal outcomes.

From a rational decision-making perspective in HAI (Oulasvirta 
et al., 2022), optimal interaction with AI requires that users possess 
a clear understanding of their performance to adjust their behav-
ior. Similarly, metacognitive judgments exhibit considerable individ-
ual variability (Ackerman & Thompson, 2017; Toplak et al., 2011), 
which can relate to cognitive performance (Toplak et al., 2011). The 
Dunning-Kruger Effect (DKE) describes a cognitive bias where indi-
viduals with lower ability overestimate their competence while those 
with higher ability underestimate it (Kruger & Dunning, 1999). For 
HAI, a DKE would suggest that low performers may not optimize their 
interaction with AI due to poorer metacognitive monitoring (‘‘rational-
hypothesis’’). However, one could argue that if AI interaction im-
proves overall cognitive performance by augmenting intellect (Engel-
bart, 1962), then metacognitive bias and its link to cognitive perfor-
mance may disappear (‘‘augmentation-hypothesis’’).

Despite expanding work on AI-assisted decision-making, few studies 
systematically examine how people calibrate self-assessments while 
reasoning with AI. To disambiguate these opposing hypotheses and 
address the remaining gap in the literature, we must empirically evalu-
ate metacognitive monitoring, including metacognitive bias, individual 
metacognitive accuracy, metacognitive sensitivity, and its relation to 
performance (DKE) in HAI. Building on preestablished constructs of 
metacognition (Fleming, 2024), we focus on whether the DKE per-
sists and whether users’ AI literacy mitigates or exacerbates potential 
overconfidence. We thus conceptually replicate Jansen et al. (2021) 
in interaction with AI to explore whether AI impacts self-assessments 
of performance (RQ1: Is interaction with AI associated with reduced 
metacognitive accuracy?), if it reduces the ability to distinguish be-
tween correct and incorrect judgments (RQ2: Does interaction with AI 
as compared to no-AI increase or decrease metacognitive sensitivity?), 
and if it amplifies or reduces self-assessment bias between low- and 
high-performing individuals (RQ3: Does interaction with AI reduce or 
amplify the DKE pattern?).

We designed an experiment where participants used AI to com-
plete logical reasoning tasks from the Law School Admission Test 
(LSAT). This setting is analogous to those utilized in prior research on 
metacognitive abilities and the DKE (Jansen et al., 2021). By analyzing 
participants’ self-assessments after AI interaction, we can describe how 
AI use is associated with participants’ metacognition and study its 
relation to task performance (DKE).

In Study 1 (N=246), we found that while AI use substantially 
improves task performance in the LSAT, it also coincides with a large 
overestimation of users’ performance (low metacognitive accuracy). 
Yet, we show using a computational model that the DKE is not only 
smaller but disappears entirely in our sample while being present 
in a comparable large-scale sample without AI use (Jansen et al., 
2021). Technological knowledge and critical appraisal of AI, as mea-
sured by the ‘‘Scale for the assessment of non-experts AI literacy’’ 
(SNAIL) (Laupichler et al., 2023), increased confidence but decreased 
the accuracy of self-assessment. In Study 2 (N = 452), where we incen-
tivize metacognitive monitoring with monetary benefits and collect our 
own non-AI baseline group, we replicate the pattern of results of Study 
1.

To summarize, although AI has the potential to improve perfor-
mance in cognitive tests such as the LSAT and level individual biases 
2 
in metacognition, it carries the risk of inflated self-assessments of 
performance. We discuss how to navigate this trade-off and how to 
improve metacognitive accuracy to empower users to make better 
decisions when using interactive AI. Our paper extends our understand-
ing of metacognitive monitoring in HAI by investigating the interplay 
between metacognition, cognitive performance, and AI literacy. Our 
contributions and research results are:

1. Empirically examining associations between AI use and metacog-
nitive monitoring.

2. Revealing that while AI can improve task performance, it leads 
to overestimation of performance.

3. Demonstrating that the DKE is reduced when participants use AI, 
suggesting that AI can level cognitive and metacognitive deficits.

4. Highlighting a paradox where higher AI literacy relates to less 
accurate self-assessment, with participants being more confident 
yet less precise in their performance evaluations.

5. Offering design recommendations for interactive AI systems to 
enhance metacognitive monitoring by empowering users to crit-
ically reflect on their performance.

2. Background

2.1. Human metacognition

Human metacognition research investigates the ability to mon-
itor, evaluate, and regulate our own cognitive processes (Fleming, 
2024) and, therefore, has been proposed to be essential in interactive 
generative AI systems (Tankelevitch et al., 2024).

A key aspect of metacognition is distinguishing between internal 
cues (i.e., self-generated reasoning) and external feedback (Koriat, 
1997). When feedback is immediate or requires little effort, individuals 
may develop ‘‘illusions of knowledge’’, overestimating how much they 
truly know (Fiedler et al., 2019; Fisher & Oppenheimer, 2021). In the 
context of AI, these illusions may become even more pronounced, as 
high-quality assistance can overshadow users’ metacognitive cues about 
their abilities.

Metacognitive judgments primarily involve accuracy and sensitivity. 
Metacognitive sensitivity reflects the ability to distinguish between 
correct and incorrect judgments, often measured by confidence rat-
ings post-decision (Fleming, 2024). Perfect metacognitive sensitivity 
would entail that an individual’s confidence ratings accurately re-
flect their performance, with high confidence corresponding to correct 
judgments and low confidence corresponding to incorrect judgments. 
Metacognitive accuracy is shaped by metacognitive bias (consistent 
over- or underestimation of one’s cognitive abilities or performance) 
and noise (encompasses random, unintentional fluctuations in self-
assessments) (Colombatto & Fleming, 2023; Fiedler et al., 2019; Flem-
ing, 2024). Bias skews evaluations predictably, while noise introduces 
inconsistency, reducing sensitivity (Fleming, 2024). High metacogni-
tive noise relates to low metacognitive sensitivity (Fleming, 2024).

The DKE appears in the connection between metacognitive accu-
racy and skill. It suggests that less-skilled individuals overestimate 
their performance, while highly competent individuals underestimate 
theirs (Kruger & Dunning, 1999). Despite the existence of debates 
regarding whether the DKE is a statistical artifact or if it accurately 
reflects true population trends (Gignac, 2024; Gignac & Zajenkowski, 
2020; Jansen et al., 2021), studies like Jansen et al. (2021) and Ehrlinger
et al. (2008) replicated these findings with large samples, confirming 
the DKE in verbal and logical reasoning tasks.

Our approach to studying the DKE shifts the focus to a task-specific 
context, even though metacognition and the DKE are often examined in 
educational settings (e.g., see Hansen et al. (2024) in math education 
and Mahdavi (2014) for an overview).

Following Dunning (2011), we replicate the method of Jansen et al. 
(2021) by concentrating on task performance and ratings of absolute 
performance estimates after task completion.
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2.2. Metacognition in human-AI interaction

As AI technologies continue to become more integrated into daily 
life, transcending their original scope (Shneiderman, 2020), they offer 
unprecedented opportunities to augment human capabilities in a broad 
range of contexts – such as in medical treatment (Moor et al., 2023), 
drug discovery (Mak et al., 2023), and climate change (Kaack et al., 
2022) – as well as in personal contexts (Draxler et al., 2023), en-
hancing productivity, improving decision-making and supporting learn-
ing (Draxler et al., 2024). However, such interactions’ effectiveness 
heavily depends on how users perceive, trust, and engage with AI 
systems (Omrani et al., 2022).

A recent survey by Vaccaro et al. (2024) distinguishes between 
human–AI synergy – where combined performance surpasses either 
humans or AI alone – and human–AI augmentation, where humans 
aided by AI do better than unassisted humans. They found that when 
humans already outperform AI, adding AI improves the team’s overall 
performance. However, as AI becomes more powerful, the average 
performance of these teams declines. Thus, a central challenge in 
human–AI interaction is achieving synergy when AI models surpass 
human capabilities.

These issues likely stem from suboptimal interfaces that fail to 
support metacognition (Kloft et al., 2024; Kosch et al., 2023; Tankele-
vitch et al., 2024). Research shows that users often overestimate their 
AI-assisted performance and struggle to monitor or plan interactions ef-
fectively (Bosch et al., 2024; Kloft et al., 2024; Kosch et al., 2023; Villa 
et al., 2023). For instance, Zamfirescu-Pereira et al. (2023) found that 
users have difficulty crafting effective prompts, while Dang et al. (2023) 
noted challenges in switching between tasks and writing prompts. 
Furthermore, explanations from AI systems are often uninformative, 
ignored, or lead to cognitive biases themselves (Bertrand et al., 2022; 
Eiband et al., 2019; Vasconcelos et al., 2023; Wang & Yin, 2021). 
AI literacy, which involves understanding AI concepts and evaluating 
outputs critically, is also essential for effective interaction (Laupichler 
et al., 2023). However, its influence on metacognitive judgments in 
AI-assisted decision-making and interaction optimization is unclear.

In sum, although previous work highlights that people often offload 
cognition to external supports, the specific interplay between self-
assessment and AI assistance remains insufficiently explored (Tankele-
vitch et al., 2024). In particular, it is unclear how immediate AI 
help might distort self-assessments of competence or amplify biases 
such as the DKE. To address this, we examine how users estimate 
their own performance when interacting with AI, building on estab-
lished metacognition frameworks (Fleming, 2024) and prior research 
on human–AI collaboration (Buçinca et al., 2021).

3. Research model and hypotheses

We have conducted two studies. Study 1 compares a group of 
participants using AI to Jansen et al. (2021) data on the LSAT (where 
the task was the same but had not involve AI). Study 2 replicates and 
extends Study 1.

Despite expanding work on AI-assisted decision-making, few studies 
systematically examine how people calibrate self-assessments while 
reasoning with AI. To disambiguate the opposing hypotheses (‘‘rational-
hypothesis’’ vs. ‘‘augmentation-hypothesis’’) and address the remaining 
gap in the literature, we focus on whether the DKE persists and whether 
users’ AI literacy mitigates or exacerbates potential overconfidence. We 
thus conceptually replicate Jansen et al. (2021) to explore whether 
interaction with AI is associated with metacognitive accuracy, metacog-
nitive sensitivity, and the DKE pattern. Recent work on AI literacy 
distinguishes factors like Technical Understanding (TU), Critical Ap-
praisal (CA), and Practical Application (PA) (Laupichler et al., 2023), 
each of which may differentially shape confidence and calibration. We 
further examine how AI literacy subscales (TU, CA, PA) relate to these 
outcomes (see Table  1).

Our research model aims to clarify how AI usage influences both 
objective and perceived performance in logical reasoning tasks, as well 
3 
as how users’ AI literacy might shape these effects. In this model, AI 
usage is hypothesized to improve objective performance (i.e., achieved 
number of correct answers), given that AI systems can offer high-
quality outputs. However, we propose that such AI usage can alter key 
aspects of metacognitive monitoring, namely, metacognitive accuracy, 
metacognitive sensitivity, and the DKE, in ways that might undermine 
users’ self-awareness.

Metacognitive accuracy refers to the difference between a user’s per-
ceived performance and their actual performance. Building on preestab-
lished constructs of metacognition (Fleming, 2024), we explore whether
AI usage affects metacognitive accuracy (more or less accurate self-
assessments) (RQ1).

Metacognitive sensitivity refers to a user’s ability to discriminate 
between correct and incorrect responses, often measured via confidence 
judgments. In our model, the immediacy of AI outputs could weaken 
individuals’ sensitivity (Fleming, 2024), making them less able to iden-
tify potential errors. We therefore explore whether interaction with 
AI affects metacognitive sensitivity, and if it amplifies or reduces self-
assessment bias between low- and high-performing individuals (RQ2).

Third, we explore whether the DKE manifests differently when 
individuals rely on AI. The Dunning–Kruger pattern typically shows 
that low-performing individuals overestimate their abilities and high-
performing individuals underestimate them, reflecting systematic vari-
ations in metacognitive accuracy as a function of skill. In our re-
search model, we explore whether AI usage might flatten or even erase 
such skill-based differences, creating a new distribution of over- and 
underestimation patterns (RQ3).

To motivate these, we consider three possible mechanisms.
First (H1), people often misattribute externally generated informa-

tion to themselves  (Johnson et al., 1993). AI may blur self vs. AI output 
distinction, causing source-monitoring errors (Johnson et al., 1993), 
and fostering an ‘‘illusion of knowledge’’.  Fisher and Oppenheimer 
(2021) show that reading fluent explanations inflates perceived un-
derstanding. Drawing on prior research (Fisher & Oppenheimer, 2021; 
Fleming, 2024; Tankelevitch et al., 2024), we therefore hypothesize 
that users may mistake the AI’s capabilities for their own, thus rel-
atively inflating their performance estimates, lowering metacognitive 
accuracy despite objective performance gains.

Second (H2), instant, highly-confident AI responses trigger the
processing-fluency heuristic (Alter et al., 2007), impairing deliberate 
and effortful error checking (Diemand-Yauman et al., 2011). For this 
reason, and consistent with the model of Fleming (2024), we expect 
reduced correspondence between confidence and correctness, i.e., re-
duced metacognitive sensitivity. This effect is likely to arise if people 
perceive AI’s suggestions as highly reliable, thereby reducing their 
motivation to examine responses closely.

Third (H3), the DKE appears in the connection between metacog-
nitive accuracy and skill: low performers overestimate and high per-
formers underestimate their abilities (Kruger & Dunning, 1999). Under 
the ‘‘rational-hypothesis’’ lens, this implies that low-skill users, poor at 
metacognitive monitoring, will fail to optimize their interaction with 
AI, perpetuating or even amplifying their calibration errors. Conversely, 
the ‘‘augmentation-hypothesis’’ argues that AI use (Engelbart, 1962; 
Risko & Gilbert, 2016) levels task accuracy, potentially dissolving the 
bias–skill link entirely. We therefore ask whether AI support will (a) 
preserve the classic DKE (‘‘rational-monitoring’’) or (b) attenuate it 
by compressing performance insight variance across users (‘‘augmen-
tation’’). Moreover, users’ AI literacy may moderate these outcomes. 
Although one might hypothesize that greater AI knowledge fosters 
more calibrated self-assessment, it is equally possible that higher liter-
acy encourages false confidence and illusions of competence (Fisher & 
Oppenheimer, 2021). Consequently, our model incorporates AI literacy 
as a factor that could amplify, mitigate, or otherwise shape the impact 
of AI usage on both performance and metacognitive processes.

In summary, the proposed research model positions AI usage as 
a key driver of changes in objective and metacognitive performance 
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Table 1
Descriptive Statistics for all subjective variables for the full sample and split by performance quartile (Q). 
 Full sample Q1 Q2 Q3 Q4

 n 246 110 59 55 22
 Performance 12.98 (2.88) 10.82 (3.07) 14 (-) 15 (-) 16 (-)
 Estimate 16.50 (3.71) 15.34 (4.31) 17.39 (2.93) 17.40 (3.07) 17.68 (2.17)
 Compared to other participants in this study, how would you rate your general 
logical reasoning ability when using the help of AI? (% rank)

68.08 (19.3) 66.02 (20.51) 70.71 (18.35) 68.22 (17.87) 71.0 (19)

 
 Using the AI, how many of the 20 logical reasoning problems do you think you 
will solve correctly?

15.96 (3.63) 15.49 (3.83) 16.17 (3.6) 16.33 (3.68) 16.82 (2.13)

 
 Without AI use, how many of the 20 logical reasoning problems do you think 
you would solve correctly?

11.64(4.53) 11.25(4.95) 11.36(4.19) 12.24(4.31) 12.91(3.58)

 
 Compared to other AI systems, how would you estimate the AI system’s logical 
reasoning ability? (% rank)

70.02 (17.91) 69.04 (18.04) 69.44 (18.01) 70.0 (18.27) 76.59 (15.79)

 
 On its own, how many of the 20 logical reasoning problems do you think the AI 
would solve correctly?

16.54 (7.75) 15.75 (4.53) 16.47 (3.74) 18.31 (14.42) 16.32 (3.26)

 
 Compared to other participants in this study, how well do you think you will do? 
(% rank)

66.95 (19.84) 64.0 (21.93) 69.31 (17.49) 68.8 (17.54) 70.77 (19.3)

 
 How difficult is solving logical reasoning problems for you? 5.38 (2.01) 5.43 (2.05) 5.88 (2.03) 4.93 (1.86) 4.91 (1.93)
 
 How difficult is solving logical reasoning problems for the average participant? 6.09 (1.56) 6.14 (1.62) 6.34 (1.59) 5.93 (1.53) 5.64 (1.14)
 
 Compared to other participants in this study, how would you rate your general 
logical reasoning ability when using the help of AI? (% rank)

69.83 (21.86) 66.86 (24.44) 72.9 (19) 72.2 (20.18) 70.45 (18.5)

 
 Using the AI, how many of the 20 logical reasoning problems do you think you 
solved correctly?

16.50 (3.71) 15.35 (4.31) 17.39 (2.93) 17.40 (3.07) 17.68 (2.17)

 
 Without AI use, how many of the 20 logical reasoning problems do you think 
you would have solved correctly?

11.61 (4.52) 11.21 (4.6) 11.78 (4.47) 12.00 (4.94) 12.18 (3.03)

 
 Compared to other AI systems, how would you estimate the AI system’s logical 
reasoning ability? (% rank)

76.29 (18.42) 74.04 (19.51) 78.41 (17.03) 77.2 (19.57) 79.64 (11.92)

 
 On its own, how many of the 20 logical reasoning problems do you think the AI 
would have solved correctly?

17.74 (8.65) 17.25 (10.40) 17.68 (2.84) 18.69 (10.45) 18.0 (2.16)

 
 Compared to other participants in this study, how well do you think you 
performed? (% rank)

68.63 (21.39) 65.11 (23.81) 71.14 (19.1) 72.13 (19.21) 70.82 (17.9)

 
 How difficult was solving these logical reasoning problems for you? 5.67 (2.33) 5.85 (2.35) 5.64 (2.24) 5.47 (2.39) 5.32 (2.36)
 
 How difficult was solving these logical reasoning problems for the average 
participant?

6.11 (2.09) 6.3 (2.14) 6.07 (1.95) 5.82 (2.15) 6.0 (2.09)

 
 SNAIL: Technical Understanding 3.83 (1.60) 3.75 (1.57) 3.99 (1.62) 3.77 (1.66) 3.94 (1.55)
 
 SNAIL: Critical Appraisal 5.03 (1.28) 5.02 (1.29) 5.05 (1.25) 5.01 (1.33) 5.05 (1.29)
 
 SNAIL: Practical Application 5.02(1.31) 5.0(1.39) 4.99(1.27) 5.02(1.32) 5.17(1.07)

Note: M (SD) and the sample size (n). Scale for the assessment of non-experts’ AI literacy (SNAIL). According to task context, rank % instructions are scaled as follows: marking 
90% means you perform better than 90% of participants, marking 10% means you perform better than only 10% of participants, and marking 50% means you will perform better 
than half of the participants.- indicates no variation, e.g., when all participants in a quantile had the same value.
while also recognizing that individual differences in AI literacy may 
interact with such effects. Over two empirical studies, we examine each 
of these relations, assessing whether AI indeed boosts task performance, 
whether it influences users’ global and local metacognitive judgments, 
and whether it disrupts or reshapes the classic DKE.

4. Study 1: Metacognition in human-AI interaction

4.1. Method

In the following, we motivate and document our methodological 
choices when conducting Study 1. The research software can be found 
at the following repositories: https://github.com/aaltoengpsy/interf
ace-frontend and https://github.com/aaltoengpsy/interface-backend. 
4 
Note that both the data and the material of Jansen et al. (2021) 
are openly available under https://osf.io/er9ms/, which allowed us to 
closely follow their task environment and sample characteristics for the 
purpose of Study 1. All data collected for the purpose of our paper 
and analysis scripts can be found at https://osf.io/svax9/overview. 
As the two samples were gathered at different times and participants 
were not randomly assigned to ‘‘AI’’ versus ‘‘No-AI’’ conditions, any 
differences we observe are descriptive associations rather than causal 
effects. We therefore interpret Study 1 as providing suggestive, not 
causal, evidence.

4.1.1. Participants
To explore individual differences in cognitive and metacognitive 

performance, we recruited a larger sample than typical DKE studies, 
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allowing us to detect differences in metacognitive accuracy across high 
and low performers (Dunning, 2011; Gignac & Szodorai, 2024). We 
powered for the smallest effect of interest, which is the DKE. For power 
analysis, we used bootstrapped samples of Jansen et al. (2021) with 
sample sizes ranging from 80 to 400 to assess the ability to detect the 
DKE through t -tests across quartiles. We computed the proportion of
p-values < .05 to determine the optimal sample size for sufficient statis-
tical power (80%). With this, we found that a sample size of 250–300 
participants is optimal for reliably detecting differences between the 
upper and lower quartiles in metacognitive accuracy.

We recruited 274 English-fluent participants located in the USA 
through Prolific. We included an attention check, requiring partici-
pants to read a short description of the study and task. They then 
answered two multiple-choice questions, one about the topic (logical 
reasoning) and another regarding which option to choose when solving 
the problems (the best one). We excluded thirteen (13) participants 
due to failing the attention check, as well as two (2) due to erroneous 
responses (e.g., exceeding the number of possible correct answers in 
estimating performance) and thirteen (13) due to low completion times.

We further analyzed data from 246 participants (identified as female 
114; identified as male 130, identified as non-binary 2; Age: 𝑀 = 
39.85, 𝑆𝐷 = 14.53). When asked to estimate their English fluency, 218 
participants reported themselves as native English speakers, 25 as fully 
fluent, two as conversationally fluent and one as understanding basic 
English. No participants preferred not to disclose their language profi-
ciency. 14 participants in our sample reported their highest educational 
degree to be a doctoral degree, 58 a higher tertiary education degree 
(Master’s level), 95 a lower tertiary education degree (Bachelor’s level), 
52 an upper secondary school/high school and 27 a vocational college 
degree. 13 participants had taken the LSAT before; their performance 
was slightly lower, 𝑀 = 12.38, 𝑆𝐷 = 3.22, compared to those who have 
not taken it, 𝑀 = 13.01, 𝑆𝐷 = 2.85, thus they were not excluded from 
the sample. We collected informed consent from each participant before 
the study in accordance with the Declaration of Helsinki guidelines 
of 2013. Each participant was compensated 6.5 pounds per hour. In 
accordance with the TENK national guidelines (the Finnish National 
Board on Research Integrity), this study did not require ethics approval 
as it involved minimal risk to participants, with no intervention beyond 
standard practice and no collection of sensitive personal data.

In comparison to our sample, Jansen et al. (2021) drew a much 
larger benchmark cohort—3,543 U.S. adults recruited on MTurk—who 
completed the items entirely unaided. The study was purely obser-
vational, collected before the advent of ChatGPT, and offered a flat 
participation compensation of 3$.

4.1.2. Quasi-experimental design
Participants’ logical reasoning ability was measured with the 20 

multiple-choice logical reasoning problems used by Jansen et al. (2021) 
to approximate the LSAT, a widely recognized, real-world assess-
ment used in high-stakes decision-making, such as law school ad-
missions (Shultz & Zedeck, 2011; Wainer, 1995). It also serves as a 
benchmark in machine learning research, making it ideal for comparing 
AI-assisted performance (Katz et al., 2024). An example LSAT question 
provided to participants was: ‘‘It has been proven that the lie detector 
can be fooled. If one is truly aware that one is lying, when in fact one is, 
then the lie detector is worthless. The author of this argument implies 
that: (1) The lie detector is sometimes worthless. (2) The lie detector is 
a useless device. (3) No one can fool the lie detector all of the time. (4) 
A good liar can fool the device. (5) A lie detector is often inaccurate.’’.

Using the same items as Jansen et al. (2021) enabled us to compare 
our results to a representative sample of participants who did not use 
AI in the task and replicate the results of the original study by Kruger 
and Dunning (1999). 
5 
In addition to participants’ actual logical reasoning performance 
with AI use, we measured perceived performance with and without 
AI, and AI’s system performance on its own using the items presented 
in Table  1. Lastly, participants’ AI literacy was measured using the 
SNAIL (Laupichler et al., 2023) at the end of the study, allowing 
us to evaluate AI literacy comprehensively among non-experts. The 
scale features 31 items to assess participants’ technical understanding, 
critical appraisal, and practical application of AI systems. The scores 
can be found at the end of Table  1.

4.1.3. Task
Participants completed 20 LSAT logical reasoning items in a ran-

domized order. Each problem was displayed on the left-hand side of the 
screen, while a ChatGPT interface was presented on the right (see Fig. 
1). Participants were required to interact with ChatGPT for assistance, 
ensuring at least one prompt per problem, before submitting their final 
answers and rating their confidence in their response (‘‘How confident 
are you that your response is correct?’’; from ‘‘unsure’’ to ‘‘certain’’ 
on a 100-step slider), see Table  1. Unlimited text chat interaction 
was enabled during the task, allowing participants to engage with 
ChatGPT as much as they deemed necessary. The LSAT problems were 
intended to assess logical reasoning abilities and did not require any 
prior knowledge of law to solve.

4.1.4. Procedure
Upon entering the study on Prolific, participants were redirected 

to our application. After consenting to participate, we quantified user 
expectations before interaction with the systems. A series of stud-
ies (Bosch et al., 2024; Kloft et al., 2024; Kosch et al., 2023; Villa 
et al., 2023) found that users hold high expectations regarding their 
performance with AI systems, yet are largely unaware of their ac-
tual performance when completing tasks with AI-assistance – in other 
words, they fail to monitor their performance. Participants estimated 
how many of the 20 items they expected to answer correctly on 
a 0-100 numeric scale (pre-task expectation). After completing the 
task, they provided the same estimate again (post-task expectation). 
Collecting users’ expectations both before and after interaction serves 
two purposes. First, pre-task expectations capture anticipatory beliefs 
that may influence subsequent behavior (a placebo-like mechanism that 
has been documented in HCI research on AI systems (Bosch et al., 
2024; Kosch et al., 2023). Second, the difference between post- and 
pre-task scores provides an individualized index of expectation, which 
we use as a predictor of performance-monitoring accuracy models (see 
Analysis section). This also aligns with the original study of Jansen 
et al. (2021).

After measuring expected performance, they were briefly intro-
duced to the task and allowed to test the chat interaction. Afterwards, 
participants engaged in a task to assess their logical reasoning skills 
by solving a series of LSAT problems. Before submitting their final 
answers, they were asked to interact with ChatGPT, ensuring they 
provided at least one prompt per problem. After completing each 
question, participants rated their confidence in their response using a 
100-step slider ranging from ‘‘unsure’’ to ‘‘certain’’. Participants were 
permitted unlimited text-based interaction with ChatGPT, allowing 
them to seek as much assistance as they felt necessary during the 
problem-solving process. After solving the problems in a randomized 
order (see Section 4.1.3), participants were again asked to complete 
the expectations questionnaire in the past tense. They also responded 
to the SNAIL questionnaire (Laupichler et al., 2023) and filled in their 
demographic information, including age, gender, occupation, education 
level, English proficiency, and whether they had taken the LSAT before. 
Study 1 took, on average, 42 min to complete.
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Fig. 1. Our online study application featured a horizontally split interface, with survey items and logical reasoning problems presented on the left and a ChatGPT 
interface on the right.
4.1.5. Apparatus
We inspected the software and flow of Jansen et al. (2021)

and carefully replicated it, integrating a side-by-side view of ChatGPT 
and the survey interface (Fig.  1). We used ChatGPT-4o
(gpt-4o-2024-05-13) due to its widespread use in enhancing cog-
nitive task performance (Bastani et al., 2024; Draxler et al., 2023, 
2024). A custom interface (Fig.  1) was built to log user interactions, 
enabling qualitative chat analysis. The application automatically col-
lected survey responses and chat logs and recorded them at the end of 
the study. We included a button to copy each problem and its answer 
options to the clipboard so they could be easily pasted into the chat.

4.1.6. Analysis
We analyzed the data in five steps. First, we compared our sample 

performance to that of Jansen et al. (2021) and to the performance 
of AI alone. This allowed us to analyze where AI augments human 
performance (i.e., human–AI interaction outperforms a no-AI group) 
and human–AI synergy (i.e., human–AI interaction outperforms AI). 
We analyze both average performance and its distribution. Second, 
we analyzed metacognitive (RQ1) accuracy on a task level – the 
difference between objective and estimated performance1 comparing 
human–AI interaction to a no-AI group – and trial-level confidence 
ratings to assess metacognitive sensitivity (RQ2). With this, we can 
analyze the metacognitive performance of users when interacting with 
AI globally (accuracy) after the tasks and locally (sensitivity) after 
each decision. Note that for Jansen et al. (2021), the question was 
(‘‘How many of the 20 logical reasoning problems do you think you 
solved correctly?’’) while in our sample using AI, we asked: ’’Using 
the AI, how many of the 20 logical reasoning problems do you think 
you solved correctly?’’. Next, we correlated metacognitive performance 
metrics with performance and AI literacy measures to explore what 
predicts low metacognitive performance in human–AI interaction, for a 
similar analysis approach, see McIntosh et al. (2019). Fourth, we used a 
computational model of performance and performance assessments to 
compare our sample and Jansen et al. (2021) to estimate how AI affects 
the DKE (RQ3). Lastly, we qualitatively analyzed participant strategies 

1 In line with Ehrlinger et al. (2008), we focus on numeric estimates of 
performance after the task, not relative performance in comparison to others.
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and how they conceptualize the human–AI relation.2 We use frequentist 
statistics (𝛼= 5%) for simple statistical tests (e.g., paired and unpaired
t -test and Pearson correlation) in the first four analyses and Bayesian 
statistical modeling for the computational model. Note that we focus 
only on these analyses in the exploration of our data for the current 
paper; however, we encourage the re-analysis and further exploration 
in the openly available dataset: https://osf.io/svax9/overview.

4.2. Findings

4.2.1. Human-AI composite performance
To see whether there is a synergy effect of using ChatGPT in the 

LSAT (i.e., Human–AI performance > AI performance), we compared 
the average ChatGPT performance (100 runs at 𝑀 = 13.65) to our 
users’ average performance (𝑀 = 12.98, 𝑆𝐷 = 2.88). We find a 
significant difference, with participants performing slightly worse than 
ChatGPT alone 𝑡(245) = −3.66, 𝑝 < .001, 𝑑 = −0.23 in the task. Next, we 
compared our sample’s performance to Jansen et al. (2021) representa-
tive sample of 3543 participants, who completed the same task without 
any assistance (𝑀 = 9.45, 𝑆𝐷 = 3.59). We find that in our sample, 
participants performed significantly better with ChatGPT assistance 
𝑡(245) = 19.23, 𝑝 < .001, 𝑑 = 1.23 as compared to the Jansen et al. 
(2021) sample. Therefore, while, on average, there is no human–AI 
synergy, we do find that ChatGPT use can augment human performance 
for solving the LSAT logical problems (i.e. human–AI performance >
human performance).

Looking at individual performance, we can find indications of 
human–AI synergy. The difference between our sample’s and ChatGPT’s 
performance is rather small, at less than one point. 55.28% (136 of 246) 
of our participants performed better than ChatGPT. However, 89.43% 

2 Given the large samples in our study and the ceiling effects encountered 
Fig.  4(a), we do not test for the normality of residuals of our variables. Instead, 
we model the data using a final Bayesian computational framework, which 
allows for more flexible assumptions and can account for ceiling effects in our 
main analysis. This approach provides more robust estimates by incorporating 
uncertainty in a probabilistic manner rather than relying on strict parametric 
assumptions.

https://osf.io/svax9/overview


D. Fernandes et al. Computers in Human Behavior 175 (2026) 108779 
Fig. 2. Comparison of performance scores between participants interacting with ChatGPT and a dataset without AI (Jansen et al., 2021). The blue density curve 
represents the distribution of performance scores in a sample of 246 participants using ChatGPT, showing a peak in performance at around 14 points. The yellow 
density curve corresponds to a larger sample (n = 3543) from the Jansen et al. (2021) dataset, with lower overall performance scores. The vertical dashed line 
indicates the mean performance score in the ChatGPT simulation.
(220 of 246) in our sample performed better than the average score of 
the Jansen et al. (2021) sample (see also Fig.  2).

Therefore, while overall performance increased with the use of 
ChatGPT augmenting the human ability to solve LSAT problems, on 
average, we do not find a human–AI synergy. The composite perfor-
mance of ChatGPT and the participant overtook the performance of 
ChatGPT alone for only slightly more than half of the participants 
in our sample. With our chat-based AI-assistance’s ability to enhance 
performance established in human augmentation but not synergy, we 
can now focus on investigating metacognitive abilities.

4.2.2. Metacognitive accuracy and sensitivity
RQ1 investigated whether interaction with AI affects metacogni-

tive accuracy, that is, how closely participants’ estimated performance 
aligns with their actual performance. Our data shows that participants 
were inaccurate in assessing their performance after task completion, 
as indicated in the item ‘‘Using the AI, how many of the 20 logical 
reasoning problems do you think you solved correctly?’’, see also Table 
1. On average, they estimated solving about 17 out of 20 items (𝑀
= 16.50, 𝑆𝐷 = 3.72). This overestimation of about 4 points could be 
distinguished from 0, 𝑡(245) = 14.14, 𝑝 < .001, 𝑑 = 0.9.

To test whether AI use amplifies overestimation, we applied the 
same metric to the (Jansen et al., 2021) dataset (no-AI condition; 𝑁
= 3543 vs. 𝑁 = 246 in our AI group). Comparing estimates of per-
formance and actual performance, we find that the no-AI participants 
also significantly overestimated their performance, 𝑡(3542) = 17.35, 𝑝 <
.001, 𝑑 = 0.29, but the effect size was substantially smaller than in 
the AI group (𝑑 = 0.93). Note that for a more thorough investation 
of RQ1 a true experiment is needed comparing the biased estimation 
more closely.

To see whether participants track information in each trial and 
answer RQ2, we turn to metacognitive sensitivity that we estimate from 
confidence ratings when making the decision. After removing partici-
pants with only one level of correctness, i.e., all correct or all incorrect, 
we further analyzed data from 245 participants. The mean confidence 
(rated on a scale from 0–100) for correct answers was 82.49 (14.24) 
and for incorrect answers 77.00 (16.52), 𝑡(244) = 8.21, 𝑝 < .001,
𝑑 = 0.52. To evaluate sensitivity more granularly, we conducted a 
Receiver Operating Characteristic (ROC) analysis. ROC analysis is a 
technique used to assess the performance of a judgment by plotting 
the true positive rate against the false positive rate across different 
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thresholds. Here, we applied ROC analysis to understand how well 
participants’ confidence scores predicted whether their responses were 
correct (see Fig.  3A).

By using ROC analysis, we obtain a metric, the area under the curve 
(AUC), that quantifies how effectively a participant’s confidence ratings 
differentiate between correct and incorrect responses. An AUC value of 
0.5 indicates no better-than-chance discrimination, while higher values 
reflect greater sensitivity, meaning the participant’s confidence reliably 
tracks correctness. Thus, the ROC analysis provides a nuanced indi-
vidual, trial-level measure of metacognitive accuracy beyond simple 
average confidence or aggregate performance estimates.

The mean AUC was .62 (𝑆𝐷 = 11.2) which could be distinguished 
from 0.5 (𝑡(244) = 16.02, 𝑝 < .001, 𝑑 = 1.02). Most participants’ (210 
out of 246; 85.37%) metacognitive AUC values are above .50 (random 
guessing). This means that confidence scores indicate participants’ 
metacognitive sensitivity on a trial level in human–AI interaction.

Prior metacognition work treats AUC values above .7 as ‘‘moderate 
sensitivity’’, where participants are able to separate correct from in-
correct answers (Ais et al., 2016; Clayton et al., 2023; Fleming & Lau, 
2014). Our AI-assisted group achieved a mean AUC of .62, significantly 
above chance, yet noticeably attenuated compared to the benchmark. 
This value is sufficiently high to indicate that participants engaged in 
metacognitive processing.

Although participants’ mean AUC (.62) exceeded chance, it fell 
significantly short of the commonly used ‘‘benchmark’’ of .7, 𝑡(244) =
−11.73, 𝑝 < .001, 𝑑 = −0.75, indicating a deficit in trial-level sensitivity 
relative to that standard. Additionally, a mean AUC of .62 is small 
enough to confirm our prediction that AI support would temper partic-
ipants’ ability to distinguish right from wrong answers. This measured 
attenuation aligns with our hypothesis that interacting with the AI 
improves accuracy but impairs the ability that underlies effective self-
monitoring. Against those reference points, our participants’ mean AUC 
= .62 indicates they are relatively worse at monitoring their accuracy 
(above chance), yet below the level typically considered acceptable. 
Note that for the remaining 36 participants, confidence ratings could 
not distinguish between correct and incorrect trials (for the distribution 
of AUC values, refer to Fig.  3B). For these participants, confidence 
judgments were effectively random or worse than random chance, 
indicating that they tended to be as confident or even more confident 
about incorrect responses than correct ones. This pattern suggests a 
miscalibration in their metacognitive judgments, where confidence fails 
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Fig. 3. (A) Receiver Operating Characteristic (ROC) curves showing the relationship between True Positive Rate (Sensitivity) and False Positive Rate (1 – 
Specificity) for participants (color) and pooled across participants (black). The dashed diagonal line indicates the line of no discrimination (random guessing). 
For each participant, we generated a ROC curve, colored lines, as well as one from pooled responses (black line), which illustrates the trade-off between the 
true positive rate (i.e., the proportion of correct judgments identified as correct) and the false positive rate (i.e., the proportion of incorrect judgments identified 
as correct) across various confidence thresholds. High metacognitive sensitivity would position the curves close to the 𝑦-axis and the top of the graph, and low 
metacognitive sensitivity to the dashed line. We can compute the area under the curve (AUC) as an estimate of metacognitive sensitivity. (B) Distribution of AUC 
values across all participants, with a peak around 0.6, suggesting variability in metacognitive sensitivity, with most participants performing above chance level 
(AUC = .5).
to serve as a reliable indicator of actual performance. Thus, our sample 
exhibits very low metacognitive sensitivity and, in consequence, low 
metacognitive monitoring. Note, however, that for a robust thorough 
investigation of RQ2 a true experiment is again needed comparing 
sensitivity across groups.

4.2.3. Correlation of metacognitive ability, performance, and AI literacy 
(SNAIL)

A number of significant relationships were found when correlating 
several metacognitive indices with LSAT performance and AI literacy, 
see Table  2. We observed a positive relation between performance and 
participants’ average confidence estimates. Participants who performed 
well were also more confident on average. However, those who were, 
on average, more confident also overestimated their performance due 
to increased metacognitive bias. This is probably due to the relationship 
between SNAIL factors and performance estimates, where participants 
who expressed more technical knowledge and more critical appraisal 
also estimated their performance to be relatively higher. However, 
those with high technical understanding were also less accurate in 
their metacognitive judgments. All SNAIL factors correlated positively 
to average confidence. Note that these correlations are rather small 
and should thus be interpreted with caution. Metacognitive sensitivity 
(AUC and 𝛥𝑐𝑜𝑛𝑓 ) was not related to AI literacy, performance, or 
metacognitive accuracy.

4.2.4. AI use cancels the Dunning-Kruger effect
RQ3 aimed to determine whether AI interaction would affect the 

classic DKE pattern in which lower performers overestimate their 
abilities while higher performers underestimate them. The correlation 
between estimated performance and actual performance is small to 
medium-sized (see Table  2, and for visual representation Fig.  4(a)). 
While some participants were very accurate in estimating their per-
formance, some participants were considerably off in their estimates 
(Fig.  4(a)). This suggests the possibility of a DKE-like pattern, where 
ability in a task is related to the metacognitive ability to judge one’s 
task performance. For the classical quantile plot, refer to Fig.  4(b).3

3 Note, however, that this plot can be misleading (Gignac & Zajenkowski, 
2020).
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We calculated the difference between quantiles to test whether 
metacognitive accuracy was worse in the low-scoring quantile than 
in the high-scoring quantile. Both quantile’s metacognitive accuracy 
differed from 0, (Q1: 𝑡(109) = −10.15, 𝑝 < .001, 𝑑 = −0.97, Q4: 
𝑡(21) = −3.64, 𝑝 = .002, 𝑑 = −0.78), probably due to the overall bias. 
However, we found that the difference for Q1 is larger than for Q4, 
𝑡(130) = 2.79, 𝑝 = .006, 𝑑 = 0.49 (see also Fig.  4(b) and Table  1). 
Note that this pattern of effect could be driven by metacognitive bias 
alone. To establish a DKE, we must first quantify the metacognitive 
noise in our sample. To do so, we employ a Bayesian computational 
model,4 a hierarchical Bayesian model to jointly estimate participants’ 
objective and perceived performance while accounting for latent skill, 
metacognitive bias, and metacognitive noise.5 To allow for a baseline 
comparison of the DKE, we modeled the data jointly with that of Jansen 
et al. (2021), whose study did not involve AI. This approach enables us 
to compare the Dunning-Kruger effect in our sample, where participants 
used AI, with the non-AI sample of Jansen et al. (2021). The model 
accounts for ceiling effects in performance estimates, treating scores of 
20 as censored observations.

Specifically, our hierarchical Bayesian model accounts for the pres-
ence of AI (𝑘 = ‘‘AI’’ or ‘‘no AI’’) in estimating both the participants’ 
achieved performance and their estimated performance. It also inte-
grates latent skill, metacognitive bias, and group-level metacognitive 
noise, which scales the bias and latent skill. Metacognitive bias, in the 
model, reflects each person’s over- or under- estimation of their skill, 
while metacognitive noise reflects the lack of information regarding 
their own skill.

Let 𝜃𝑖 represent the relative latent skill for participant 𝑖 with the 
prior 𝜃𝑖 ∼  (0, 2).

The objective performance 𝑦obj,𝑖 is modeled as:
𝑦obj,𝑖 ∼ Binomial

(

𝑛obj, 𝛷approx(𝜃𝑖)
)

,

4 For a guide on Bayesian techniques, see Bürkner (2017), Dix (2022), Kay 
et al. (2016), Schad et al. (2021), van de Schoot et al. (2021), we used the 
tutorial of Nathaniel Haine’s as a starting point for our modeling efforts: http:
//haines-lab.com/post/2021-01-10-modeling-classic-effects-dunning-kruger/.

5 For a theoretical model, see Burson et al. (2006).

http://haines-lab.com/post/2021-01-10-modeling-classic-effects-dunning-kruger/
http://haines-lab.com/post/2021-01-10-modeling-classic-effects-dunning-kruger/
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Table 2
Correlation table of metacognitive measures and AI literacy as measured by the SNAIL.
 𝛥𝐸𝑃 Estimate Performance 𝛥𝑐𝑜𝑛𝑓 𝜇𝑐𝑜𝑛𝑓 AUC SNAIL TU SNAIL CA SNAIL PA 
 𝛥𝐸𝑃  
 Estimate 0.72***  
 Performance −0.43*** 0.32***  
 𝛥𝑐𝑜𝑛𝑓 −0.04 −0.03 0.01  
 𝜇𝑐𝑜𝑛𝑓 0.24*** 0.46*** 0.27*** −0.10  
 AUC 0.03 0.05 0.03 0.59*** −0.08  
 SNAIL TU 0.21** 0.17** −0.06 −0.12 0.13* −0.10  
 SNAIL CA 0.10 0.14* 0.06 0.04 0.25*** 0.03 0.49***  
 SNAIL PA 0.05 0.10 0.06 0.01 0.24*** 0.05 0.57*** 0.81***  
Note. 𝑑𝑓 = 243, 𝛥𝐸𝑃 represents the difference between performance and estimated performance (metacognitive accuracy). Performance refers 
to the achieved task performance. 𝛥𝑐𝑜𝑛𝑓 is the difference between predicted and actual confidence, while 𝜇𝑐𝑜𝑛𝑓 is the mean confidence (average 
confidence ratings). AUC refers to Area Under the Curve, with a higher AUC value indicating a more reliable confidence score in reflecting 
participants’ correctness; SNAIL TU stands for the Technical Understanding score, SNAIL CA represents the Critical Appraisal score, and SNAIL 
PA is the Practical Application score.
* Indicates 𝑝 < .05.
** Indicates 𝑝 < .01.
*** Indicates 𝑝 < .001.
Fig. 4. Correlation of estimated and achieved LSAT score from different perspectives, individual Fig.  4(a) vs. quartile-level Fig.  4(b) for the AI group in Study 1.
where 𝑛obj is the total number of items and 𝛷approx(⋅) is the approxima-
tion for the cumulative standard normal distribution.

Perceived performance 𝑦per,𝑖 is influenced by group level bias 𝑏𝑘, 
latent skill 𝜃𝑖 and noise 𝜎𝑘, which scales the difference of bias 𝑏𝑘 and 
latent skill 𝜃𝑖:

Here, 𝑛per is the total number of perceived items. The priors for bias 
𝑏𝑘 and noise 𝜎𝑘 are the following:
𝑏𝑘 ∼  (0, 2), 𝜎𝑘 ∼ LogNormal(0, 2).

Our model mitigates the issue around regression to the mean by 
explicitly modeling latent skill 𝜃𝑖 as a continuous variable with a 
flexible distribution. By incorporating noise 𝜎𝑘 that scales skill level 𝜃𝑖
and bias 𝑏𝑘, the model allows for greater variability in judgment among 
low-skilled participants. This scaling effect, coupled with a bias term 
𝑏𝑘 and hierarchical priors, reduces the tendency for all participants to 
regress toward a single mean. For a DKE to exist, bias that is 𝑏𝑘 > 0 
and noise that is 𝜎𝑘 > 1 has to be satisfied. If only metacognitive bias is 
driving a DKE pattern, then 𝜎𝑘 will be centered at 1 (values of 𝜎𝑘 under 
1 and close to zero would mean that high-performers would be less 
accurate in estimating their performance6). The bias parameter for our 
AI-interaction sample, 𝑏𝐴𝐼 , showed a median of 0.45 (95% HDI [0.32, 
0.60]). The consistently positive bias indicates that individuals, when 

6 To fit our data into the model, we used the STAN-sampler (Carpen-
ter et al., 2017). Four Hamilton-Monte-Carlo chains were computed, each 
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using AI, tend to overestimate their abilities. We also find a bias 𝑏𝑛𝑜𝐴𝐼
for the non-AI group of Jansen et al. (2021) (Median = 0.23 (95% HDI 
[0.21, 0.25], 𝑝𝑏 = 0.0%) although when comparing posterior samples 
(see Fig.  5), 99% of posterior samples were larger in the AI group as 
compared to the non-augmented sample.

To understand how metacognitive noise affected self-assessment, 
we can turn to 𝜎𝑘. For the non-AI group, we find a 𝜎𝑛𝑜𝐴𝐼  above 1, 
indicating noise affecting self-assessment. This group had a median of 
1.78 (95% HDI [1.69, 1.88], 𝑝𝑏 = 0.0%, see Fig.  5B), indicating noise in 
judgment for the sample of Jansen et al. (2021). Combined with bias, 
this contributes to the DKE (see also Fig.  5C for posterior predictions 
from the model). In comparison, our sample, which used AI to complete 

with 15,000 iterations and a 30% warm-up. Trace plots of the Markov-
chain Monte-Carlo permutations were inspected for divergent transitions and 
autocorrelation, and we checked for local convergence. All Rubin-Gelman 
statistics (Gelman & Rubin, 1992) were well below 1.1, and the Effective 
Sampling Size was over 1000.
We then analyzed the posterior of the model. To investigate a parameter’s 

distinguishability from zero, we utilized 𝑝𝑏, which resembles the classical 𝑝-
value but quantifies the effect’s likelihood of being zero (for 𝑏) and one (for 
𝜎) or opposite (Hoijtink & van de Schoot, 2018; Shi & Yin, 2020). Effects with 
𝑝𝑏 ≤ 2.5% were deemed distinguishable. We also calculated the 95% High-
Density Interval (HDI) for each model parameter; for visualization of prior 
and posterior, see Fig.  5.
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Fig. 5. Comparison of posterior distributions with median and 95% HDI for the model parameters 𝑏 for bias in each group (Plot A) and 𝜎 (Plot B). The posterior 
distributions of the AI group (in blue) and no-AI group (in yellow). In Plot A, kernel-density curves show the full posterior for each group (blue = AI, yellow = 
no-AI); vertical ticks mark the posterior median and the shaded band the 95 HDI. All mass lies to the right of zero, but the AI density is clearly shifted further 
right, indicating stronger overestimation bias. In plot B, densities are plotted on the same scale as in (A). The no-AI posterior peaks well above the neutral point 
of 𝜎, signifying noise that scales bias by skill and thus sustains a Dunning–Kruger gradient. In contrast, the AI posterior is centered almost exactly on 𝜎 = 1, 
implying that bias no longer increases as skill decreases. Plot C shows the average posterior predicted values for percent correct achieved (x-axis) and percent 
correct expected (y-axis) for each group. The s-shape around ideal metacognitive accuracy (gray line) indicates a DKE with low-performers overestimating their 
performance more than high-performers (yellow; no AI group).
the task, was not affected by the DKE (Median = 1.01, 95% HDI [0.84, 
1.19], 𝑝𝑏 = 45.66%). Given the non-overlapping distributions (0% 
overlap) and the small HDI’s, we can assert that with 𝜎𝐴𝐼  being around 
1, scaling of the equation of bias and skill is not present in our sample. 
This finding aligns with our ‘‘augmentation-hypothesis’’: as AI’s outputs 
levels individual skill differences, even lower performers achieve a 
higher performance level, resulting in uniform overestimation rather 
than the classic Dunning–Kruger pattern. Hence, when augmented with 
AI, we observe no DKE (see again Fig.  5C).

4.2.5. Qualitative data
In addition to quantitative measurements, we analyzed the qual-

itative data collected during Study 1 using an inductive thematic 
approach (Clarke & Braun, 2017). This included both the prompts 
participants entered into the AI chatbot interface and their responses to 
an open-ended question at the end of the questionnaire. The analysis 
of the prompts provided insight into how participants interacted with 
the AI chatbot and their perceptions of it. The prompts were filtered 
to exclude those that were a direct copy from the task, ensuring that 
only meaningful interactions were kept for this analysis. The remaining 
prompts were then inductively analyzed to identify recurring themes 
(see Section 4.2.6). Responses to the open-ended question were ana-
lyzed to explore differences in AI perception during the interactions, 
where recurrent themes were found (see Section 4.2.6).

4.2.6. Analysis of prompts
In our study, we collected 6629 prompts from 246 participants, 

each answering 20 logical reasoning questions using the AI chatbot. 
Although participants could use as many prompts as they wished (with 
a minimum of 1 per question), in practice, they seldom did. Across the 
246 participants, the mean number of prompts per question was 𝑀 = 
1.15 (𝑆𝐷 = 0.34). Table  3 shows the maximum number of prompts per 
participant across all items: 46% of participants prompted the system 
only once per question, and only 8% exceeded three prompts.
Analysis of open-ended questions. A qualitative analysis of the open-
ended question ‘‘Please describe how you used the AI Chatbot’’ revealed 
diverse types of perceptions and interactions with AI among partici-
pants, highlighting varying degrees of user reliance, collaboration, and 
trust.

The majority of participants demonstrated a high level of trust in AI, 
often accepting its suggestions without further inquiry. This behavior 
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Table 3
Maximum number of prompts per participant 
across all pages. Participants tended to prompt 
ChatGPT only one time more frequently. Only 
8% of the time participants exceeded 3 prompts.
 Maximum number of prompts Count  
 1 113 (46%) 
 2 90 (37%)  
 3 23 (9%)  
 4 10 (4%)  
 5 4 (2%)  
 >5 6 (2%)  

raises concerns about overreliance on AI, as noted by Lu and Yin 
(2021). 12.60% of participants perceived AI as a collaborative partner, 
using inclusive language and viewing it as part of a joint effort rather 
than just a tool. Another 21.54% of participants viewed AI strictly as 
a complementary tool, using it cautiously for verification while main-
taining control of the problem-solving process. Finally, 6.5% either 
provided inconclusive responses regarding the strategy used or did 
not find the AI tool useful. The data reveals diverse ways participants 
perceived AI, providing insights into HAI dynamics and individual 
variability.

4.3. Interim discussion

We found that using ChatGPT augmented our sample beyond a 
no-AI benchmark (i.e. AI augmentation) but that only a little more 
than half of our sample could surpass the AI alone (i.e. human–AI 
synergy). We found that most people overestimated their performance 
with AI and that there was no indication of a DKE when using the AI 
system. This may be due to participants’ tendency not to reflect on 
their performance and low metacognitive sensitivity (on an absolute 
level, participants do not perform well), which is corroborated by our 
qualitative reports of people copying and pasting questions to the chat 
interfaces and then taking the AI’s answer without reflection.

5. Study 2: Incentivizing metacognitive thinking

Our descriptive data revealed that most users rarely prompted Chat-
GPT more than once per question. This shallow level of engagement 
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Table 4
Participant approaches to AI use in study 1.
 Category Description Actual (M ± SD) Perceived (M ± SD) 
 High level of trust Participants relied heavily on AI (‘‘blindly 

trusted’’), copying and pasting questions 
without critically assessing AI’s outputs or 
further inquiry. 58.94% (145 out of 246)

13.014 ± 3.062 16.844 ± 3.679  

 Collaborative 
Partner

Participants perceived AI as a collaborative 
partner rather than a mere tool, engaging 
in joint problem-solving and using inclusive 
language (‘‘we did this’’) when describing 
their interactions. 12.60% (31 out of 246)

13.065 ± 3.176 18.161 ± 1.881  

 Complementary 
Tool

Participants used AI strictly as a 
complementary tool for verification of their 
independently formulated answers, 
maintaining control of the process. 21.54% 
(53 out of 246)

10.5 ± 3.317 16.000 ± 6.733  

 Inconclusive/Did 
Not Use

Participants either provided inconclusive 
responses regarding the strategy used 
during the experience or did not find the AI 
tool useful. 6.91% (17 out of 246)

13.302 ± 2.729 16.302 ± 4.012  
may have limited the cues needed to calibrate confidence and allow 
for accurate self-monitoring. It is therefore plausible that encouraging 
or experimentally requiring multiple prompts could provide better 
feedback loops, enhancing users’ metacognitive sensitivity.

To address the potential confound of a lack of motivation in our 
sample to engage in metacognitive monitoring, we conducted a second 
study in which participants received a monetary incentive for accurate 
judgments across the task; for a DKE study employing incentives, 
see Ehrlinger et al. (2008) Study 3. If participants monitor their perfor-
mance when incentivized, the DKE could resurface. Given that Jansen 
et al. (2021) did not incentivize participants for accurate metacognitive 
judgments, this also mandated the sampling of a no-AI group within our 
study setup. We thus sampled another 250 participants for each the AI 
and the no-AI group to see if an incentive can motivate metacognitive 
monitoring and analyze the quantitative data. All data and analysis 
scripts for Study 2 can be found at https://osf.io/svax9/overview.

5.1. Method

We recruited 500 English-speaking participants located in the USA 
through Prolific. The sample was split into two groups: 250 participants 
completed the task without AI assistance (no-AI group) and 250 partic-
ipants completed the task with AI assistance (AI group). Participants 
solved the same 20 logical reasoning problems used in Study 1. We did 
not collect the SNAIL for the no-AI group. Study 2 took, on average, 
25 min to complete for the no-AI group and around 52 min for the AI 
group. Each participant was compensated 7 pounds per hour.

To motivate accurate self-assessment, participants in both groups 
were informed they would receive monetary compensation based on 
the accuracy of their performance estimates (compensation would 
be given to participants whose presumed number of correct answers 
closely matched their actual score). This incentive aimed to motivate 
participants to engage critically with the task and closely monitor their 
performance. All participants received full benefit compensation of 0.50 
pounds (around 8% increase) regardless of their achieved performance. 
Similarly to Study 1, we included an attention check where participants 
were required to read a brief study and task description. They then 
answered two multiple-choice questions, one about the topic (logical 
reasoning) and another regarding how they could receive additional 
compensation (good judgment).

From 500 participants, we analyzed 452 participants (age: 𝑀 =
37.24, 𝑆𝐷 = 13.36): 245 in the AI group and 207 in the no-AI group. 
Across both groups, 48 participants were excluded (3 for missing data, 3 
for invalid performance estimates (exceeding 20 correct answers), and 
42 for too low completion times.
11 
202 participants identified as female, 242 as male, 6 as non-binary, 
1 as two-spirit, and 1 who preferred not to disclose. Their high-
est educational degrees included 21 doctoral, 132 Master’s-level, 194 
Bachelor’s-level, 64 upper secondary school, and 41 vocational quali-
fications. Regarding English proficiency, 391 participants identified as 
native speakers, 56 as fully fluent, 4 as conversationally fluent, and 1 
as having basic proficiency.

For the AI group, a subset of participants (26) reported prior ex-
perience taking the LSAT. Their performance in this study (𝑀 =
13.50, 𝑆𝐷 = 1.98) was comparable to those without prior LSAT expe-
rience (n = 219; 𝑀 = 13.25, 𝑆𝐷 = 2.55), and they were not excluded 
from the analysis. For the no-AI group, 25 participants reported prior 
LSAT experience, performing similarly (𝑀 = 9.50, 𝑆𝐷 = 4.06) to those 
without LSAT experience (n = 182; 𝑀 = 9.52, 𝑆𝐷 = 3.60).

5.2. Results and discussion

Participants in the AI group performed on average slightly worse 
as compared to AI alone (𝑀 = 13.31, 𝑆𝐷 = 2.44, 𝑡(244) = −2.17, 𝑝 =
.031, 𝑑 = −0.14) but better than the no-AI group (𝑀 = 9.71, 𝑆𝐷 = 
3.59, 𝑡(450) = 12.60, 𝑝 < .001, 𝑑 = 1.18). Therefore, we can assert that, 
on average, using AI has augmented performance but not that there is 
a synergy effect. In the AI group, 59.18% of participants scored higher 
than ChatGPT, with a total of 145 participants out of 245 surpassing its 
performance. In the no-AI group, 14.49% of participants scored higher 
than ChatGPT, corresponding to 30 participants out of 207, see also 
Fig.  6. Therefore, performance in Study 2 mirrors Study 1.

Investigating metacognitive accuracy for each sample, we find that 
in the AI group, participants overestimate their performance (𝑀 = 
17.13, 𝑆𝐷 =3.16), which differed significantly from zero when sub-
tracting individual performance (𝑡(244) = 18.33, 𝑝 < .001, 𝑑 = 1.17). 
The same was found for the no-AI group (𝑀 = 13.62, 𝑆𝐷 = 4.14, 
𝑡(206) = 11.81, 𝑝 < .001, 𝑑 = 0.82). Both quantile’s metacognitive 
accuracy differed from 0 for AI (Q1: 𝑡(99) = −12.78, 𝑝 < .001, 𝑑 = −1.28, 
Q4: 𝑡(23) = −3.83, 𝑝 < .001, 𝑑 = −0.78) as well as the no-AI group 
(Q1: 𝑡(51) = −10.73, 𝑝 < .001, 𝑑 = −1.49, Q4: 𝑡(51) = −3.43, 𝑝 =
.001, 𝑑 = −0.48). Comparing estimates of estimated performance and 
performance of the first and the fourth quartile for each group, we 
find that the lowest quartile overestimates their performance relatively 
more when compared to the best-performing quartile (AI: 𝑡(122) =
4.06, 𝑝 < .001, 𝑑 = 0.73, no-AI: 𝑡(102) = 7.25, 𝑝 < .001, 𝑑 = 1.42), see Fig. 
7. Therefore, the pattern of results in Study 2 regarding metacognitive 
accuracy also closely resembles Study 1. Comparing the confidence 
for correct and incorrect responses for the AI group, we find that, on 
average, participants are more confident for correct (𝑀 = 85.95, 𝑆𝐷

https://osf.io/svax9/overview
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Fig. 6. Comparison of performance scores between the sample of participants interacting with ChatGPT and the sample of participants without AI. The blue 
density curve represents the distribution of performance scores in a sample of 245 participants using ChatGPT, showing a peak in performance at around 14 
points. The yellow density curve corresponds to the sample of participants in the No-AI group, with lower overall performance scores. The vertical dashed line 
indicates the mean performance score in the ChatGPT simulation.
Table 5
Correlation table of metacognitive measures and AI literacy as measured by the SNAIL in study 2.
 𝛥𝐸𝑃 Estimate Performance 𝛥𝑐𝑜𝑛𝑓 𝜇𝑐𝑜𝑛𝑓 AUC SNAIL TU SNAIL CA SNAIL PA 
 𝛥𝐸𝑃  
 Estimate 0.71***  
 Performance −0.42*** 0.34***  
 𝛥𝑐𝑜𝑛𝑓 −0.05 −0.05 −0.01  
 𝜇𝑐𝑜𝑛𝑓 0.39*** 0.62*** 0.28*** −0.09  
 AUC −0.16* −0.09 0.09 0.49*** −0.23***  
 SNAIL TU 0.20** 0.18** −0.04 −0.26*** 0.21** −0.21***  
 SNAIL CA 0.14* 0.21*** 0.08 −0.08 0.14* −0.12 0.68***  
 SNAIL PA 0.09 0.19** 0.12 −0.13* 0.22*** −0.15* 0.75*** 0.83***  
Note. 𝑑𝑓 = 243, 𝛥𝐸𝑃 represents the difference between performance and estimated performance (metacognitive accuracy). Performance refers 
to the achieved task performance. 𝛥𝑐𝑜𝑛𝑓 is the difference between predicted and actual confidence, while 𝜇𝑐𝑜𝑛𝑓 is the mean confidence (average 
confidence ratings). AUC refers to Area Under the Curve, with a higher AUC value indicating a more reliable confidence score in reflecting 
participants’ correctness; SNAIL TU stands for the Technical Understanding score, SNAIL CA represents the Critical Appraisal score, and SNAIL 
PA is the Practical Application score.
* Indicates 𝑝 < .05.
** Indicates 𝑝 <.01.
*** Indicates 𝑝 < .001.
= 13.71) as compared to incorrect responses (𝑀 = 82.57, 𝑆𝐷 = 15.61; 
𝑡(244) = 5.39, 𝑝 < .001, 𝑑 = 0.34). While confidence was descriptively 
lower for the no-AI group, we find the same pattern (correct: 𝑀 = 
77.57, 𝑆𝐷 = 14.85; incorrect: 𝑀 = 73.04, 𝑆𝐷 = 16.73; 𝑡(205) =
6.33, 𝑝 < .001, 𝑑 = 0.44). A slight increase in confidence when accurate 
metacognition is incentivized is consistent with Ehrlinger et al. (2008).

Conducting a ROC analysis for each group, we found that most 
participants could distinguish between correct and incorrect answers. 
The mean AUC for the AI group (𝑀 = .62, 𝑆𝐷 =0.12) and the no-AI 
group (𝑀 = .61, 𝑆𝐷 = 0.11) differed from .5 (AI: 𝑡(244) = 15.30, 𝑝 <
.001, 𝑑 = 0.98; no-AI: 𝑡(205) = 14.26, 𝑝 < .001, 𝑑 = 0.99), with most 
people exceeding the threshold of .5 AUC (AI: 196 of 245; no-AI: 172 
of 207). Consistent with Study 1, participants’ mean AUC in Study 
2 also fell significantly below the ‘‘acceptable’’ .70 benchmark (see 
Section 4.2.2) (AI group: 𝑡(244) = −10.56, 𝑝 < .001, 𝑑 = −0.67, no-AI 
group: 𝑡(205) = −11.15, 𝑝 < .001, 𝑑 = −0.78), showing a decrease of 
metacognitive sensitivity.

The pattern of correlations of performance, metacognitive measures, 
and AI literacy also resembled Study 1 in the AI group, see Table  5, and 
in the no-AI group, see Table  A.1.

Applying our computational model using the same priors and sam-
pler configuration as in Study 1, we find that both AI (Median = 
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0.63 (95% HDI [0.45, 0.85], 𝑝𝑏 = 0.0%) and no-AI (Median = 0.75 
(95% HDI [0.58, 0.95], 𝑝𝑏 = 0.0%)) show a metacognitive bias without 
distinguishing clearly between the AI group as compared to the non-AI 
sample; 18.1% of posterior samples were larger in the AI group as com-
pared to the no-AI group, see also Fig.  8A. Note that the discrepancy 
to Study 1, likely comes from the relatively lower precision, given the 
smaller sample size in Study 2. 𝜎𝑘 indicating metacognitive noise was 
found to be above 1 for the no-AI group (Median = 1.53 (95% HDI 
[1.18, 1.96], 𝑝𝑏 = 0.1%), resembling the DKE pattern in Study 1, but 
centered around 1 for the AI group (Median = 1.13 (95% HDI [0.93, 
1.36], 𝑝𝑏 = 10.1%)), see also Fig.  8B. 2.46% of posterior samples for 𝜎
in the no-AI group exceed the AI group. Therefore, metacognitive noise 
does not scale the bias for the AI group, but it does for the no-AI group. 
We replicate the pattern of results in Study 1 again; see also Fig.  8C. 
The difference in shape for Fig.  8C and Fig.  5C can be explained by the 
difference in range, especially regarding high performance, see Fig.  2 
and compare to Fig.  6.

Overall, we can replicate the results of Study 1 in Study 2. Giving 
an incentive for accurate metacognitive judgments did not activate 
a DKE pattern for participants using AI. Notably, despite the added 
0.50 pounds (≈ 8% of overall compensation) performance bonus, we 
observed no improvement in metacognitive accuracy relative to Study 
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Fig. 7. Correlation of estimated and achieved LSAT score from different perspectives, individual Fig.  7(a) vs. quartile-level Fig.  7(b) for the AI group in Study 2.
Fig. 8. Comparison posterior distributions with median and 95% HDI for the model parameters 𝑏 for bias in each group for bias (Plot A) and 𝜎 (Plot B) for the 
second study. The posterior distributions of the AI group (in blue) and no AI group (in yellow). Plot C shows the average posterior predicted values for percent 
correct achieved (x-axis) and percent correct expected (y-axis) for each group. The s-shape around ideal metacognitive accuracy (gray line) indicates a DKE with 
low-performers overestimating their performance more than high-performers (yellow; no AI group).
1. Both the AI and no-AI groups continued to overestimate their perfor-
mance by similar margins, suggesting that even with incentive alone, 
it did not substantially improved self monitoring. This pattern implies 
that participants were already sufficiently engaged in Study 1, and 
that incentive-driven effort is unlikely to be the primary driver of 
metacognitive calibration. Nevertheless, we can see that the absolute 
levels of performance overestimation are slightly larger for the no-AI 
group in our sample (e.g., comparing estimated performance across 
studies).

6. Discussion

This paper offers insights into metacognitive monitoring in a
human–AI interaction context by examining how users with varying 
competence interacted with AI during logical reasoning tasks. We 
explored the impact of AI on metacognitive accuracy, focusing on the 
DKE, user confidence, and AI literacy in two studies. Our findings 
reveal a significant inability to assess one’s performance accurately 
when using AI equally across our sample.

6.1. Effect of AI literacy on metacognition in human-AI interaction

While AI users in our sample outperformed those in Jansen et al. 
(2021), they consistently overestimated their performance by about 
four points, aligning with previous research (Kloft et al., 2024; Kosch 
et al., 2023; Villa et al., 2023). The moderate correlation between es-
timated and actual scores (Table  2), with many participants estimating 
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their joint performance with AI higher than the most skilled in the 
sample (Fig.  4(a)), suggests that AI improves performance but leads to 
highly biased self-assessments.

This disconnect between actual and perceived performance mirrors 
earlier findings on overtrust and overreliance in AI systems (Kloft 
et al., 2024; Lu & Yin, 2021; Shekar et al., 2024). Overconfidence may 
impair users’ ability to evaluate their performance without AI, posing 
challenges for designing balanced human–AI interfaces. The classic 
DKE, where lower performers overestimate and higher performers un-
derestimate their performance, disappeared with AI use, suggesting 
that while AI levels performance, it does not correct inflated self-
assessments. We found that participants, regardless of their skill level, 
exhibited significant overestimation. While such leveling might seem 
beneficial for the lowest performing quartile, who are often unskilled 
yet unaware (Ehrlinger et al., 2008), it raises concerns about accurate 
self-awareness across all performance levels. In particular, this uniform 
overestimation aligns with our ‘‘augmentation-hypothesis’’, in which 
AI’s consistently correct outputs overshadow skill-based differences, 
improving low performers to a higher baseline at the cost of leading 
to generalized overconfidence. Metacognitive bias was doubled for the 
entire sample compared to Jansen et al. (2021) in Study 1, although 
there was a lack of a large difference in overestimation between groups 
in Study 2.

A skeptic might attribute the observed metacognitive distortion to 
the quasi-experimental sample in Study 1. Yet, the randomized replica-
tion (Study 2) still shows robust overestimation. Its smaller magnitude 
arises from a ceiling in self-ratings – censored in our hierarchical 
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Bayesian model – which nevertheless recovers a clear AI-linked bias. 
AI assistance also shifts the noise parameter toward unity, eliminating 
the skill-based damping that normally curbs high-performers’ miscal-
ibration and thus flattening the DKE slope. Converging evidence – 
few prompts used, the effect of AI literacy (performance estimates 
and confidence rise without better calibration), and many participants 
claiming near-perfect scores – supports the conclusion that AI use in 
itself affects metacognitive monitoring in our studies.

We have also found an unexpected link between AI literacy and 
metacognitive accuracy across both studies. Participants with higher 
AI literacy were less accurate in self-assessments, contradicting the 
assumption that higher AI literacy improves metacognitive monitoring 
and calibration. Familiarity with AI may enhance the better-than-
average effect (Brown, 1986; Zell et al., 2020), leading to the over-
estimation of both relative and absolute performance.

Metacognitive sensitivity further explains these effects. Our ROC, 
which examines how confidence ratings are distributed between correct 
and incorrect responses, showed that while participants were generally 
confident, they tended to overestimate the correctness of incorrect 
responses, indicating low metacognitive sensitivity. This suggests that 
while participants felt assured in their answers, their metacognitive 
sensitivity (i.e. how well their confidence distinguished correctness on 
the trial level) was consistently low. Therefore, we can find further 
evidence that participants did not monitor their performance when 
using the AI system to complete the task.

Qualitative data revealed varied perceptions of AI’s role, from a 
tool to a teammate, but these differences did not descriptively show 
an effect on performance or metacognitive accuracy, see Table  4, 
contradicting theories that suggest interaction framing impacts out-
comes (Pataranutaporn et al., 2023; Villa et al., 2023). Regardless of 
user perception, the core metacognitive challenges in HAI persist. These 
findings suggest that while AI assistance can improve task performance, 
it does not proportionally enhance individuals’ metacognitive abilities, 
highlighting a disconnect between cognitive performance gains and 
self-evaluative insight.

Decomposing overall AI-literacy into its three sub-scales (see Table 
1) reveals that Technical Understanding (TU) (i.e. familiarity with 
prompting, parameter settings, and API workflows) is significantly 
associated with greater mean overestimation. By contrast, Critical Ap-
praisal (CA) and Practical Application (PA) show small correlations 
with overestimation. Notably, CA and PA instead predict higher mean 
confidence without improving the ability to discriminate between cor-
rect and incorrect judgments (AUC), suggesting a disconnect between 
global self-belief and local monitoring (disconnect between global and 
local knowledge). This pattern aligns with the illusion of explanatory 
depth (Fisher & Oppenheimer, 2021), where procedural fluency pro-
vides a misleading sense of ability. In our context, users who feel 
technically proficient while interacting with AI tend to overestimate 
their performance (even though their trial-level sensitivity remains 
unchanged). Targeting this gap by, for example, prompting users to 
justify AI suggestions, may help bridge global confidence and local 
accuracy.

6.2. Integration into theory

High metacognitive bias leads users to overestimate their perfor-
mance and over-rely on AI systems (Ma et al., 2024), reducing their 
ability to critically monitor HAI outcomes (Tankelevitch et al., 2024). 
From a computational rationality perspective (Oulasvirta et al., 2022), 
this bias may be an adaptive response to AI presence, as participants 
may optimize perceived utility (e.g., efficiency) rather than monitoring 
HAI. This is supported by low metacognitive sensitivity and partici-
pants’ reliance on copy-pasting rather than higher-level metacognitive 
strategies (e.g., AI as a collaborator). This aligns with Villa et al. (2023), 
who found reduced error-processing when participants believed they 
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were using a sham AI. Therefore, our study provides further evidence 
of diminished metacognitive monitoring in HAI.

A lack of HAI monitoring explains several effects. First, it clarifies 
why AI use has been linked to adverse learning outcomes (Abbas 
et al., 2024; Bastani et al., 2024); users are overly optimistic and 
fail to monitor evolving joint performance. Second, while AI tools 
offer perceived empowerment and efficiency (Kloft et al., 2024; Kosch 
et al., 2023; Villa et al., 2023), the lack of reflection hinders users’ 
ability to assess real benefits (placebo effect). Additionally, it explains 
persistent overreliance and overtrust (Klingbeil et al., 2024), and why 
AI explanations are rarely integrated into behavior (Bansal et al., 2021; 
Ghassemi et al., 2021; Wang & Yin, 2021). Though we can offer 
methods to improve metacognitive judgments grounded in HCI and psy-
chological research (refer to Table  6), they may provide only temporary 
solutions. Rafner et al. (2022) calls for a systemic, long-term strategy, 
considering cognitive and metacognitive deskilling risks at individual, 
team, and organizational levels. This emphasizes the need for strategies 
that foster cognitive resilience and critical engagement with AI over 
short-term fixes targeting immediate metacognitive deficits.

6.3. Limitations

While our study provides valuable insights into metacognitive mon-
itoring in HAI, several limitations may affect the generalizability and 
interpretation of our findings.

As Study 1 contrasted two independent datasets, it should be con-
sidered a quasi-experimental comparison, not a true randomized exper-
iment. The AI group was recruited for the present study, whereas the 
no-AI benchmark relies on the open dataset of Jansen et al. (2021). 
As the two samples were gathered at different times and participants 
were not randomly assigned to ‘‘AI’’ versus ‘‘No-AI’’ conditions, any 
differences we observe are descriptive associations rather than causal 
effects. We therefore interpret Study 1 as providing suggestive, not 
causal, evidence, and use Study 2’s randomized design to probe the 
effect of AI support more rigorously.

Secondly, the apparent absence of the DKE (‘‘being unskilled and 
unaware’’ (Dunning, 2011) in our study may not fully reflect the 
underlying cognitive dynamics. AI interaction may have made partic-
ipants equally skilled yet (still) unaware of their performance rather 
than eliminating the DKE. AI-enhanced performance might have decou-
pled metacognitive judgments from cognitive performance (e.g., high 
confidence, low sensitivity, and high bias).

Third, we relied on LSAT questions as our logical reasoning task. 
While these assess logical reasoning, they may not capture the diversity 
of real-world reasoning skills or domains. Furthermore, these tasks 
might overlap with the AI’s training data, limiting generalizability. 
However, since ChatGPT-4o’s performance was imperfect (68.25%), we 
believe our findings still apply to other tasks.

Fourth, our focus on LSAT-based reasoning limits the scope of 
metacognitive biases across domains. Future research should use di-
verse tasks (e.g., writing creative texts with an LLM) to examine how 
AI interaction affects metacognitive monitoring and whether improve-
ments in accuracy generalize across tasks.

Fifth, we found little effect of different AI strategies on metacog-
nitive accuracy and performance. The AI’s role, whether as a tool, 
collaborator, or teammate, did not impact participants’ performance 
evaluation (see again Table  4). Future research should explore how 
different AI roles (e.g., tool vs. collaborator) influence metacognitive 
accuracy and task performance.

Sixth, AI literacy was self-reported, introducing the possibility of 
over- or underestimation due to psychological biases. In particular, 
people may experience illusions of explanatory depth, believing they 
understand AI better than they actually do, akin to the better-than-
average effect (Fisher & Oppenheimer, 2021; Zell et al., 2020). This 
is closely related to the DKE, where individuals with low competence 
often remain unaware of their limitations (Kruger & Dunning, 1999). 



D. Fernandes et al. Computers in Human Behavior 175 (2026) 108779 
Table 6
Issues, consequences, and design principles to address impaired metacognitive monitoring in human–AI interaction.
 Metacognitive issue Consequences Design principles  
 Overreliance on AI 
outputs

Users trust AI outputs without 
critical assessment, leading to 
reduced self-reflection and 
failure to notice AI errors.

∙ Confidence calibration to align user 
confidence with AI output uncertainty 
(Ma et al., 2024)
∙ AI uncertainty visualization to make 
AI output reliability transparent
(Beauxis-Aussalet et al., 2021; 
Prabhudesai et al., 2023)
∙ Explanatory AI interfaces to clarify 
AI decision-making processes and 
enable users to assess validity (Karran 
et al., 2022)

 

 Loss of 
metacognitive 
monitoring

Users are unable to accurately 
assess their own performance or 
monitor task progress, especially 
in complex decision-making 
tasks.

∙ Post-task reflection to encourage 
users to evaluate their performance 
after interacting with AI (for a starting 
point, see Tankelevitch et al. (2024))
∙ Cognitive forcing strategies such as 
prompts to promote critical thinking 
and reduce automatic reliance on AI 
outputs (Buçinca et al., 2021)

 

 Illusion of 
understanding

AI-literate users tend to 
over-rely and over-trust on AI 
outputs.

∙ ‘‘Explain-back’’ micro-task before 
submission to help calibrate illusions 
of knowledge (Fisher & Oppenheimer, 
2021).

 

In our context, participants who self-rated higher AI literacy might also 
have been more prone to overconfidence, conflating AI’s outputs with 
their own abilities. Consequently, the correlation between AI literacy 
and performance overestimation could be amplified simply because 
people who think they know AI better also tend to inflate their self-
assessment. In line with this, self-reported AI literacy might not directly 
translate into effective interactions with AI. Thus, how AI literacy links 
to performance and metacognition deserves to be further explored in 
future studies.

Seventh, participants were required to prompt ChatGPT at least 
once and then proceed with their decision, which may not reflect 
naturalistic usage patterns. In real-world scenarios, users might consult 
AI tools multiple times, ignore them entirely, or encounter more proac-
tive AI systems offering unsolicited suggestions. Future studies should 
examine how varying degrees of user engagement with the AI and the 
AI’s proactiveness influence metacognitive accuracy, sensitivity, and 
bias.

Finally, exploring long-term learning scenarios, such as those ex-
amined in Bastani et al. (2024), could illuminate how metacogni-
tive processes evolve as individuals repeatedly interact with AI sys-
tems. Over extended periods, accurate metacognitive monitoring may 
become increasingly vital for achieving sustained performance gains 
(e.g., learning calculus with AI assistance and then taking an exam); our 
study cannot speak to the role of metacognition in AI-mediated learning 
contexts.

6.4. Implications

Following Van Berkel and Hornbæk (2023), we identify three types 
of implications of our work: theory, design, and methodology.

Regarding theory, while biases in human–AI interaction have been 
studied (Bertrand et al., 2022; Haliburton et al., 2024; Kloft et al., 
2024; Liu et al., 2019), little research has empirically examined the 
metacognitive mechanisms driving these biases. Even Tankelevitch 
et al. (2024), who underscore the importance of metacognition in gen-
erative AI contexts, do not provide a dedicated empirical investigation 
into these underlying processes. Applying metacognition theory to HAI 
(e.g., see Colombatto & Fleming, 2023) thus offers a new perspective for 
improving metacognitive monitoring in interaction design. Our findings 
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additionally suggest that AI literacy alone is insufficient for achieving 
optimal metacognitive abilities in HAI.

For the design of HAI interaction and its behavioral analysis, we pro-
pose that research needs to develop a new HAI interaction model that 
integrates metacognition and new design concepts. In the short term, 
designers should adjust interaction models, similar to Buçinca et al. 
(2021), and consider broader sociotechnical risks (Rafner et al., 2022). 
In the long term, HCI must develop a specific HAI interaction model 
that enhances metacognitive functions, e.g., to support knowledge-
based interactions (Rasmussen, 1983). Based on the results from study 
2, participants who used the LLM solved, on average, three more items, 
yet overestimated their score by four points. We thus present a design 
implication (see Table  6), introducing a simple ‘‘explain-back’’ task 
before accepting the model’s answer, requiring users to briefly re-state 
its logic in simple language. Prior HCI work shows that this lowers over-
confidence and directly targets the illusion of understanding (Fisher & 
Oppenheimer, 2021). Future work should systematically vary prompt 
frequency to test whether deeper interaction with AI improves users’ 
ability to discriminate correct from incorrect responses. Furthermore, 
interface designers should calibrate assistance to those empirical vari-
ations, e.g., surface real-time accuracy feedback once overestimation 
exceeds four points, progressively adjusting assistance level through 
real-time sensing of metacognitive states (e.g., user agency) and adapt-
ing interfaces to cognitive states (Chiossi et al., 2023; Villa et al., 2024). 
Such mechanisms could be crucial for optimizing HAI.

Methodologically, our study introduces a new approach to analyz-
ing biased decision-making in repeated AI interactions. Using com-
putational methods, researchers can distinguish general biases from 
those emerging in post-decision processes (e.g., increased metacogni-
tive noise), allowing for a more precise analysis of bias development in 
HAI.

7. Conclusion

We found that participants using an LLM had improved logical 
reasoning performance as compared to no AI, but that cognitive per-
formance gains did not scaffold metacognition. With AI use, the DKE 
was eliminated. Based on these findings, we suggest developing new in-
terfaces for interactive AI that are designed to enhance metacognition, 
allowing users to monitor their performance more accurately.
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Table A.1
Correlation table of metacognitive measures in study 2 for the no-AI group.
 𝛥𝐸𝑃 Estimate Performance 𝛥𝑐𝑜𝑛𝑓 𝜇𝑐𝑜𝑛𝑓 AUC 
 𝛥𝐸𝑃  
 Estimate 0.68***  
 Performance −0.54*** 0.25***  
 𝛥𝑐𝑜𝑛𝑓 −0.22** −0.15* 0.11  
 𝜇𝑐𝑜𝑛𝑓 0.38*** 0.60*** 0.20** −0.18**  
 AUC −0.12 −0.13 0.01 0.57*** −0.24***  
Note. 𝑑𝑓 = 205, 𝛥𝐸𝑃 represents the difference between performance and estimated performance (metacognitive accuracy). Performance refers to 
the achieved task performance. 𝛥𝑐𝑜𝑛𝑓 is the difference between predicted and actual confidence, while 𝜇𝑐𝑜𝑛𝑓 is the mean confidence (average 
confidence ratings). AUC refers to Area Under the Curve, with a higher AUC value indicating a more reliable confidence score in reflecting 
participants’ correctness.
* 𝑝 < .05.
** 𝑝 < .01.
*** 𝑝 < .001.
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