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ARTICLE INFO ABSTRACT

Keywords: Optimizing human-AlI interaction requires users to reflect on their performance critically, yet little is known
Human-Al interaction about generative Al systems’ effect on users’ metacognitive judgments. In two large-scale studies, we investigate
Human-centered computing how AI usage is associated with users’ metacognitive monitoring and performance in logical reasoning tasks.
Metacognition

Specifically, our paper examines whether people using Al to complete tasks can accurately monitor how well
they perform. In Study 1, participants (N = 246) used Al to solve 20 logical reasoning problems from the
Law School Admission Test. While their task performance improved by three points compared to a norm
population, participants overestimated their task performance by four points. Interestingly, higher Al literacy
correlated with lower metacognitive accuracy, suggesting that those with more technical knowledge of Al
were more confident but less precise in judging their own performance. Using a computational model, we
explored individual differences in metacognitive accuracy and found that the Dunning-Kruger effect, usually
observed in this task, ceased to exist with AI use. Study 2 (N = 452) replicates these findings. We discuss how
Al levels cognitive and metacognitive performance in human-AlI interaction and consider the consequences
of performance overestimation for designing interactive Al systems that foster accurate self-monitoring, avoid
overreliance, and enhance cognitive performance.

Overconfidence
Generative Al

1. Introduction — the ability to monitor and regulate one’s cognitive processes. From
a psychological perspective, people commonly rely on Al to boost their

Humans have always used technologies to augment their cognitive cognitive processes, raising fundamental questions about how people
abilities (Alexandre e Castro, 2024; Clark, 2008; Khettab, 2019). Recent perceive their augmented performance when collaborating with Al,
advances have aimed to improve human performance and productivity and whether they remain aware of potential errors (Buginca et al.,
in a range of contexts (Hou et al., 2024; Perera, 2024; Wang et al,, 2021; Fleming, 2024). Fundamental biases, such as overtrust and over-
2020; Zulfikar et al., 2024). While there is evidence for an improve- reliance, impair performance (Inkpen et al., 2023) up to the point that

ment in human Performance with Al (}?ansal e.t al,, 2021; Steyyers the interaction decreases overall performance as compared to having
et al., 2022; Zulfikar et al., 2024), the integration of Al also brings no AI at all (Bastani et al., 2024; Vaccaro et al., 2024).

challenges related to how users perceive, interact, and rely on these
systems. Specifically, it is crucial to understand how AI influences
individuals’ ability to accurately assess their own competence and make
informed decisions, particularly in situations where overconfidence or
underestimation determines the success and efficacy of Al applications
in real-world settings (Bucinca et al., 2021; Fleming, 2024). A core
issue within this scope is the impact of Al on human metacognition

Psychological research on metacognition has shown that people
typically estimate themselves to be better than average (Brown, 1986),
also called the “better-than-average effect” (see Zell et al. (2020)).
In the context of Al, people believe Al improves performance (Kloft
et al., 2024), that Al predictions outperform professionals (Shekar et al.,
2024) and hope Al will improve their lives (Cave & Dihal, 2019).
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Research offers some scattered evidence of deficiencies in metacogni-
tive monitoring: users are largely unaware of their performance and
their performance improvement with Al Concretely, when using Al
systems, users tend to overestimate their benefits, even when using
a sham AI system (Kloft et al., 2024; Kosch et al., 2023; Villa et al.,
2023). Moreover, when studying with Al support, people are unaware
of their learning process, which leads to low exam scores. However,
accurate metacognitive monitoring is crucial for optimizing human-
Al interaction (HAI). Inaccurate evaluation of human-Al composite
performance (Engelbart, 1962) can lead to an overreliance on the
system, resulting in suboptimal outcomes.

From a rational decision-making perspective in HAI (Oulasvirta
et al., 2022), optimal interaction with Al requires that users possess
a clear understanding of their performance to adjust their behav-
ior. Similarly, metacognitive judgments exhibit considerable individ-
ual variability (Ackerman & Thompson, 2017; Toplak et al., 2011),
which can relate to cognitive performance (Toplak et al., 2011). The
Dunning-Kruger Effect (DKE) describes a cognitive bias where indi-
viduals with lower ability overestimate their competence while those
with higher ability underestimate it (Kruger & Dunning, 1999). For
HAIL a DKE would suggest that low performers may not optimize their
interaction with AI due to poorer metacognitive monitoring (“rational-
hypothesis”). However, one could argue that if Al interaction im-
proves overall cognitive performance by augmenting intellect (Engel-
bart, 1962), then metacognitive bias and its link to cognitive perfor-
mance may disappear (“augmentation-hypothesis”).

Despite expanding work on Al-assisted decision-making, few studies
systematically examine how people calibrate self-assessments while
reasoning with AL To disambiguate these opposing hypotheses and
address the remaining gap in the literature, we must empirically evalu-
ate metacognitive monitoring, including metacognitive bias, individual
metacognitive accuracy, metacognitive sensitivity, and its relation to
performance (DKE) in HAI Building on preestablished constructs of
metacognition (Fleming, 2024), we focus on whether the DKE per-
sists and whether users’ Al literacy mitigates or exacerbates potential
overconfidence. We thus conceptually replicate Jansen et al. (2021)
in interaction with Al to explore whether AI impacts self-assessments
of performance (RQ1: Is interaction with Al associated with reduced
metacognitive accuracy?), if it reduces the ability to distinguish be-
tween correct and incorrect judgments (RQ2: Does interaction with Al
as compared to no-Al increase or decrease metacognitive sensitivity?),
and if it amplifies or reduces self-assessment bias between low- and
high-performing individuals (RQ3: Does interaction with Al reduce or
amplify the DKE pattern?).

We designed an experiment where participants used Al to com-
plete logical reasoning tasks from the Law School Admission Test
(LSAT). This setting is analogous to those utilized in prior research on
metacognitive abilities and the DKE (Jansen et al., 2021). By analyzing
participants’ self-assessments after Al interaction, we can describe how
Al use is associated with participants’ metacognition and study its
relation to task performance (DKE).

In Study 1 (N=246), we found that while AI use substantially
improves task performance in the LSAT, it also coincides with a large
overestimation of users’ performance (low metacognitive accuracy).
Yet, we show using a computational model that the DKE is not only
smaller but disappears entirely in our sample while being present
in a comparable large-scale sample without Al use (Jansen et al.,
2021). Technological knowledge and critical appraisal of Al, as mea-
sured by the “Scale for the assessment of non-experts Al literacy”
(SNAIL) (Laupichler et al., 2023), increased confidence but decreased
the accuracy of self-assessment. In Study 2 (N = 452), where we incen-
tivize metacognitive monitoring with monetary benefits and collect our
own non-Al baseline group, we replicate the pattern of results of Study
1.

To summarize, although Al has the potential to improve perfor-
mance in cognitive tests such as the LSAT and level individual biases

Computers in Human Behavior 175 (2026) 108779

in metacognition, it carries the risk of inflated self-assessments of
performance. We discuss how to navigate this trade-off and how to
improve metacognitive accuracy to empower users to make better
decisions when using interactive Al. Our paper extends our understand-
ing of metacognitive monitoring in HAI by investigating the interplay
between metacognition, cognitive performance, and Al literacy. Our
contributions and research results are:

1. Empirically examining associations between AI use and metacog-
nitive monitoring.

2. Revealing that while Al can improve task performance, it leads
to overestimation of performance.

3. Demonstrating that the DKE is reduced when participants use Al,
suggesting that Al can level cognitive and metacognitive deficits.

4. Highlighting a paradox where higher AI literacy relates to less
accurate self-assessment, with participants being more confident
yet less precise in their performance evaluations.

5. Offering design recommendations for interactive Al systems to
enhance metacognitive monitoring by empowering users to crit-
ically reflect on their performance.

2. Background
2.1. Human metacognition

Human metacognition research investigates the ability to mon-
itor, evaluate, and regulate our own cognitive processes (Fleming,
2024) and, therefore, has been proposed to be essential in interactive
generative Al systems (Tankelevitch et al., 2024).

A key aspect of metacognition is distinguishing between internal
cues (i.e., self-generated reasoning) and external feedback (Koriat,
1997). When feedback is immediate or requires little effort, individuals
may develop “illusions of knowledge”, overestimating how much they
truly know (Fiedler et al., 2019; Fisher & Oppenheimer, 2021). In the
context of Al, these illusions may become even more pronounced, as
high-quality assistance can overshadow users’ metacognitive cues about
their abilities.

Metacognitive judgments primarily involve accuracy and sensitivity.
Metacognitive sensitivity reflects the ability to distinguish between
correct and incorrect judgments, often measured by confidence rat-
ings post-decision (Fleming, 2024). Perfect metacognitive sensitivity
would entail that an individual’s confidence ratings accurately re-
flect their performance, with high confidence corresponding to correct
judgments and low confidence corresponding to incorrect judgments.
Metacognitive accuracy is shaped by metacognitive bias (consistent
over- or underestimation of one’s cognitive abilities or performance)
and noise (encompasses random, unintentional fluctuations in self-
assessments) (Colombatto & Fleming, 2023; Fiedler et al., 2019; Flem-
ing, 2024). Bias skews evaluations predictably, while noise introduces
inconsistency, reducing sensitivity (Fleming, 2024). High metacogni-
tive noise relates to low metacognitive sensitivity (Fleming, 2024).

The DKE appears in the connection between metacognitive accu-
racy and skill. It suggests that less-skilled individuals overestimate
their performance, while highly competent individuals underestimate
theirs (Kruger & Dunning, 1999). Despite the existence of debates
regarding whether the DKE is a statistical artifact or if it accurately
reflects true population trends (Gignac, 2024; Gignac & Zajenkowski,
2020; Jansen et al., 2021), studies like Jansen et al. (2021) and Ehrlinger
et al. (2008) replicated these findings with large samples, confirming
the DKE in verbal and logical reasoning tasks.

Our approach to studying the DKE shifts the focus to a task-specific
context, even though metacognition and the DKE are often examined in
educational settings (e.g., see Hansen et al. (2024) in math education
and Mahdavi (2014) for an overview).

Following Dunning (2011), we replicate the method of Jansen et al.
(2021) by concentrating on task performance and ratings of absolute
performance estimates after task completion.
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2.2. Metacognition in human-Al interaction

As Al technologies continue to become more integrated into daily
life, transcending their original scope (Shneiderman, 2020), they offer
unprecedented opportunities to augment human capabilities in a broad
range of contexts — such as in medical treatment (Moor et al., 2023),
drug discovery (Mak et al., 2023), and climate change (Kaack et al.,
2022) — as well as in personal contexts (Draxler et al.,, 2023), en-
hancing productivity, improving decision-making and supporting learn-
ing (Draxler et al., 2024). However, such interactions’ effectiveness
heavily depends on how users perceive, trust, and engage with Al
systems (Omrani et al., 2022).

A recent survey by Vaccaro et al. (2024) distinguishes between
human-AI synergy — where combined performance surpasses either
humans or Al alone - and human-Al augmentation, where humans
aided by AI do better than unassisted humans. They found that when
humans already outperform Al, adding Al improves the team’s overall
performance. However, as Al becomes more powerful, the average
performance of these teams declines. Thus, a central challenge in
human-AI interaction is achieving synergy when AI models surpass
human capabilities.

These issues likely stem from suboptimal interfaces that fail to
support metacognition (Kloft et al., 2024; Kosch et al., 2023; Tankele-
vitch et al., 2024). Research shows that users often overestimate their
Al-assisted performance and struggle to monitor or plan interactions ef-
fectively (Bosch et al., 2024; Kloft et al., 2024; Kosch et al., 2023; Villa
et al., 2023). For instance, Zamfirescu-Pereira et al. (2023) found that
users have difficulty crafting effective prompts, while Dang et al. (2023)
noted challenges in switching between tasks and writing prompts.
Furthermore, explanations from Al systems are often uninformative,
ignored, or lead to cognitive biases themselves (Bertrand et al., 2022;
Eiband et al., 2019; Vasconcelos et al., 2023; Wang & Yin, 2021).
Al literacy, which involves understanding Al concepts and evaluating
outputs critically, is also essential for effective interaction (Laupichler
et al., 2023). However, its influence on metacognitive judgments in
Al-assisted decision-making and interaction optimization is unclear.

In sum, although previous work highlights that people often offload
cognition to external supports, the specific interplay between self-
assessment and Al assistance remains insufficiently explored (Tankele-
vitch et al., 2024). In particular, it is unclear how immediate Al
help might distort self-assessments of competence or amplify biases
such as the DKE. To address this, we examine how users estimate
their own performance when interacting with Al, building on estab-
lished metacognition frameworks (Fleming, 2024) and prior research
on human-AI collaboration (Bucinca et al., 2021).

3. Research model and hypotheses

We have conducted two studies. Study 1 compares a group of
participants using Al to Jansen et al. (2021) data on the LSAT (where
the task was the same but had not involve AI). Study 2 replicates and
extends Study 1.

Despite expanding work on Al-assisted decision-making, few studies
systematically examine how people calibrate self-assessments while
reasoning with Al To disambiguate the opposing hypotheses (“rational-
hypothesis” vs. “augmentation-hypothesis”) and address the remaining
gap in the literature, we focus on whether the DKE persists and whether
users’ Al literacy mitigates or exacerbates potential overconfidence. We
thus conceptually replicate Jansen et al. (2021) to explore whether
interaction with Al is associated with metacognitive accuracy, metacog-
nitive sensitivity, and the DKE pattern. Recent work on Al literacy
distinguishes factors like Technical Understanding (TU), Critical Ap-
praisal (CA), and Practical Application (PA) (Laupichler et al., 2023),
each of which may differentially shape confidence and calibration. We
further examine how Al literacy subscales (TU, CA, PA) relate to these
outcomes (see Table 1).

Our research model aims to clarify how Al usage influences both
objective and perceived performance in logical reasoning tasks, as well
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as how users’ Al literacy might shape these effects. In this model, Al
usage is hypothesized to improve objective performance (i.e., achieved
number of correct answers), given that AI systems can offer high-
quality outputs. However, we propose that such AI usage can alter key
aspects of metacognitive monitoring, namely, metacognitive accuracy,
metacognitive sensitivity, and the DKE, in ways that might undermine
users’ self-awareness.

Metacognitive accuracy refers to the difference between a user’s per-
ceived performance and their actual performance. Building on preestab-
lished constructs of metacognition (Fleming, 2024), we explore whether
Al usage affects metacognitive accuracy (more or less accurate self-
assessments) (RQ1).

Metacognitive sensitivity refers to a user’s ability to discriminate
between correct and incorrect responses, often measured via confidence
judgments. In our model, the immediacy of Al outputs could weaken
individuals’ sensitivity (Fleming, 2024), making them less able to iden-
tify potential errors. We therefore explore whether interaction with
Al affects metacognitive sensitivity, and if it amplifies or reduces self-
assessment bias between low- and high-performing individuals (RQ2).

Third, we explore whether the DKE manifests differently when
individuals rely on Al The Dunning-Kruger pattern typically shows
that low-performing individuals overestimate their abilities and high-
performing individuals underestimate them, reflecting systematic vari-
ations in metacognitive accuracy as a function of skill. In our re-
search model, we explore whether Al usage might flatten or even erase
such skill-based differences, creating a new distribution of over- and
underestimation patterns (RQ3).

To motivate these, we consider three possible mechanisms.

First (H1), people often misattribute externally generated informa-
tion to themselves (Johnson et al., 1993). Al may blur self vs. Al output
distinction, causing source-monitoring errors (Johnson et al., 1993),
and fostering an “illusion of knowledge”. Fisher and Oppenheimer
(2021) show that reading fluent explanations inflates perceived un-
derstanding. Drawing on prior research (Fisher & Oppenheimer, 2021;
Fleming, 2024; Tankelevitch et al., 2024), we therefore hypothesize
that users may mistake the AI’s capabilities for their own, thus rel-
atively inflating their performance estimates, lowering metacognitive
accuracy despite objective performance gains.

Second (H2), instant, highly-confident AI responses trigger the
processing-fluency heuristic (Alter et al., 2007), impairing deliberate
and effortful error checking (Diemand-Yauman et al., 2011). For this
reason, and consistent with the model of Fleming (2024), we expect
reduced correspondence between confidence and correctness, i.e., re-
duced metacognitive sensitivity. This effect is likely to arise if people
perceive Al’s suggestions as highly reliable, thereby reducing their
motivation to examine responses closely.

Third (H3), the DKE appears in the connection between metacog-
nitive accuracy and skill: low performers overestimate and high per-
formers underestimate their abilities (Kruger & Dunning, 1999). Under
the “rational-hypothesis” lens, this implies that low-skill users, poor at
metacognitive monitoring, will fail to optimize their interaction with
Al perpetuating or even amplifying their calibration errors. Conversely,
the “augmentation-hypothesis” argues that Al use (Engelbart, 1962;
Risko & Gilbert, 2016) levels task accuracy, potentially dissolving the
bias—skill link entirely. We therefore ask whether AI support will (a)
preserve the classic DKE (“rational-monitoring”) or (b) attenuate it
by compressing performance insight variance across users (“augmen-
tation”). Moreover, users’ Al literacy may moderate these outcomes.
Although one might hypothesize that greater AI knowledge fosters
more calibrated self-assessment, it is equally possible that higher liter-
acy encourages false confidence and illusions of competence (Fisher &
Oppenheimer, 2021). Consequently, our model incorporates Al literacy
as a factor that could amplify, mitigate, or otherwise shape the impact
of Al usage on both performance and metacognitive processes.

In summary, the proposed research model positions Al usage as
a key driver of changes in objective and metacognitive performance
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Table 1
Descriptive Statistics for all subjective variables for the full sample and split by performance quartile (Q).
Full sample | Q1 Q2 Q3 Q4
n 246 110 59 55 22
Performance 12.98 (2.88) 10.82 (3.07) 14 () 15 (-) 16 (-)
Estimate 16.50 (3.71) 15.34 (4.31) 17.39 (2.93) 17.40 (3.07) 17.68 (2.17)
“Compared to other participants in this study, how would you rate your general ~ 68.08 (19.3) | ~ 66.02 (20.51) ~ ~ 70.71 (18.35) 6822 (17.87) ~ ~ 71.0 A% ~ ~
logical reasoning ability when using the help of AI? (% rank)
Using the AL, how many of the 20 logical reasoning problems do you think you 15.96 (3.63) 15.49 (3.83) 16.17 (3.6) 16.33 (3.68) 16.82 (2.13)
will solve correctly?
Without Al use, how many of the 20 logical reasoning problems do you think 11.64(4.53) 11.25(4.95) 11.36(4.19) 12.24(4.31) 12.91(3.58)
you would solve correctly?
Compared to other Al systems, how would you estimate the Al system’s logical 70.02 (17.91) 69.04 (18.04) 69.44 (18.01) 70.0 (18.27) 76.59 (15.79)

reasoning ability? (% rank)

On its own, how many of the 20 logical reasoning problems do you think the AI 16.54 (7.75) 15.75 (4.53) 16.47 (3.74) 18.31 (14.42) 16.32 (3.26)
would solve correctly?
Compared to other participants in this study, how well do you think you will do? 66.95 (19.84) 64.0 (21.93) 69.31 (17.49) 68.8 (17.54) 70.77 (19.3)
(% rank)
How difficult is solving logical reasoning problems for you? 5.38 (2.01) 5.43 (2.05) 5.88 (2.03) 4.93 (1.86) 4.91 (1.93)
How difficult is solving logical reasoning problems for the average participant? 6.09 (1.56) 6.14 (1.62) 6.34 (1.59) 5.93 (1.53) 5.64 (1.14)
Compared to other participants in this study, how would you rate your general 69.83 (21.86) 66.86 (24.44) 72.9 (19) 72.2 (20.18) 70.45 (18.5)
logical reasoning ability when using the help of AI? (% rank)

“Using the AL how many of the 20 logical reasoning problems do you think you 16.50 (3.71) ~ | ~ 15.35 (4.31) ~~ 17.39 (2.93) = ~ 1740 3.07) ~ 17.68 (217) ~
solved correctly?
Without AI use, how many of the 20 logical reasoning problems do you think 11.61 (4.52) 11.21 (4.6) 11.78 (4.47) 12.00 (4.94) 12.18 (3.03)
you would have solved correctly?
Compared to other Al systems, how would you estimate the Al system’s logical ~ 76.29 (18.42) 74.04 (19.51) 78.41 (17.03) 77.2 (19.57) 79.64 (11.92)

reasoning ability? (% rank)

On its own, how many of the 20 logical reasoning problems do you think the AI 17.74 (8.65) 17.25 (10.40) 17.68 (2.84) 18.69 (10.45) 18.0 (2.16)
would have solved correctly?
Compared to other participants in this study, how well do you think you 68.63 (21.39) 65.11 (23.81) 71.14 (19.1) 72.13 (19.21) 70.82 (17.9)
performed? (% rank)
How difficult was solving these logical reasoning problems for you? 5.67 (2.33) 5.85 (2.35) 5.64 (2.24) 5.47 (2.39) 5.32 (2.36)
How difficult was solving these logical reasoning problems for the average 6.11 (2.09) 6.3 (2.14) 6.07 (1.95) 5.82 (2.15) 6.0 (2.09)
participant?

TSNAIL: Technical Understanding T T T 7T 383(160) | 375(1.57) T 399 (1.62) 377 (1.66) 394155
SNAIL: Critical Appraisal 5.03 (1.28) 5.02 (1.29) 5.05 (1.25) 5.01 (1.33) 5.05 (1.29)
SNAIL: Practical Application 5.02(1.31) 5.0(1.39) 4.99(1.27) 5.02(1.32) 5.17(1.07)

Note: M (SD) and the sample size (n). Scale for the assessment of non-experts’ Al literacy (SNAIL). According to task context, rank % instructions are scaled as follows: marking
90% means you perform better than 90% of participants, marking 10% means you perform better than only 10% of participants, and marking 50% means you will perform better
than half of the participants.- indicates no variation, e.g., when all participants in a quantile had the same value.

while also recognizing that individual differences in Al literacy may
interact with such effects. Over two empirical studies, we examine each
of these relations, assessing whether Al indeed boosts task performance,
whether it influences users’ global and local metacognitive judgments,
and whether it disrupts or reshapes the classic DKE.

4. Study 1: Metacognition in human-Al interaction
4.1. Method

In the following, we motivate and document our methodological
choices when conducting Study 1. The research software can be found

at the following repositories: https://github.com/aaltoengpsy/interf
ace-frontend and https://github.com/aaltoengpsy/interface-backend.

Note that both the data and the material of Jansen et al. (2021)
are openly available under https://osf.io/er9ms/, which allowed us to
closely follow their task environment and sample characteristics for the
purpose of Study 1. All data collected for the purpose of our paper
and analysis scripts can be found at https://osf.io/svax9/overview.
As the two samples were gathered at different times and participants
were not randomly assigned to “AI” versus “No-AI” conditions, any
differences we observe are descriptive associations rather than causal
effects. We therefore interpret Study 1 as providing suggestive, not
causal, evidence.

4.1.1. Participants
To explore individual differences in cognitive and metacognitive
performance, we recruited a larger sample than typical DKE studies,
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allowing us to detect differences in metacognitive accuracy across high
and low performers (Dunning, 2011; Gignac & Szodorai, 2024). We
powered for the smallest effect of interest, which is the DKE. For power
analysis, we used bootstrapped samples of Jansen et al. (2021) with
sample sizes ranging from 80 to 400 to assess the ability to detect the
DKE through t-tests across quartiles. We computed the proportion of
p-values < .05 to determine the optimal sample size for sufficient statis-
tical power (80%). With this, we found that a sample size of 250-300
participants is optimal for reliably detecting differences between the
upper and lower quartiles in metacognitive accuracy.

We recruited 274 English-fluent participants located in the USA
through Prolific. We included an attention check, requiring partici-
pants to read a short description of the study and task. They then
answered two multiple-choice questions, one about the topic (logical
reasoning) and another regarding which option to choose when solving
the problems (the best one). We excluded thirteen (13) participants
due to failing the attention check, as well as two (2) due to erroneous
responses (e.g., exceeding the number of possible correct answers in
estimating performance) and thirteen (13) due to low completion times.

We further analyzed data from 246 participants (identified as female
114; identified as male 130, identified as non-binary 2; Age: M =
39.85, SD = 14.53). When asked to estimate their English fluency, 218
participants reported themselves as native English speakers, 25 as fully
fluent, two as conversationally fluent and one as understanding basic
English. No participants preferred not to disclose their language profi-
ciency. 14 participants in our sample reported their highest educational
degree to be a doctoral degree, 58 a higher tertiary education degree
(Master’s level), 95 a lower tertiary education degree (Bachelor’s level),
52 an upper secondary school/high school and 27 a vocational college
degree. 13 participants had taken the LSAT before; their performance
was slightly lower, M =12.38, SD = 3.22, compared to those who have
not taken it, M = 13.01, SD = 2.85, thus they were not excluded from
the sample. We collected informed consent from each participant before
the study in accordance with the Declaration of Helsinki guidelines
of 2013. Each participant was compensated 6.5 pounds per hour. In
accordance with the TENK national guidelines (the Finnish National
Board on Research Integrity), this study did not require ethics approval
as it involved minimal risk to participants, with no intervention beyond
standard practice and no collection of sensitive personal data.

In comparison to our sample, Jansen et al. (2021) drew a much
larger benchmark cohort—3,543 U.S. adults recruited on MTurk—who
completed the items entirely unaided. The study was purely obser-
vational, collected before the advent of ChatGPT, and offered a flat
participation compensation of 3$.

4.1.2. Quasi-experimental design

Participants’ logical reasoning ability was measured with the 20
multiple-choice logical reasoning problems used by Jansen et al. (2021)
to approximate the LSAT, a widely recognized, real-world assess-
ment used in high-stakes decision-making, such as law school ad-
missions (Shultz & Zedeck, 2011; Wainer, 1995). It also serves as a
benchmark in machine learning research, making it ideal for comparing
Al-assisted performance (Katz et al., 2024). An example LSAT question
provided to participants was: “It has been proven that the lie detector
can be fooled. If one is truly aware that one is lying, when in fact one is,
then the lie detector is worthless. The author of this argument implies
that: (1) The lie detector is sometimes worthless. (2) The lie detector is
a useless device. (3) No one can fool the lie detector all of the time. (4)
A good liar can fool the device. (5) A lie detector is often inaccurate.”.

Using the same items as Jansen et al. (2021) enabled us to compare
our results to a representative sample of participants who did not use
Al in the task and replicate the results of the original study by Kruger
and Dunning (1999).
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In addition to participants’ actual logical reasoning performance
with Al use, we measured perceived performance with and without
Al and AI’s system performance on its own using the items presented
in Table 1. Lastly, participants’ Al literacy was measured using the
SNAIL (Laupichler et al., 2023) at the end of the study, allowing
us to evaluate Al literacy comprehensively among non-experts. The
scale features 31 items to assess participants’ technical understanding,
critical appraisal, and practical application of Al systems. The scores
can be found at the end of Table 1.

4.1.3. Task

Participants completed 20 LSAT logical reasoning items in a ran-
domized order. Each problem was displayed on the left-hand side of the
screen, while a ChatGPT interface was presented on the right (see Fig.
1). Participants were required to interact with ChatGPT for assistance,
ensuring at least one prompt per problem, before submitting their final
answers and rating their confidence in their response (“How confident
are you that your response is correct?”’; from ‘“unsure” to ‘“certain”
on a 100-step slider), see Table 1. Unlimited text chat interaction
was enabled during the task, allowing participants to engage with
ChatGPT as much as they deemed necessary. The LSAT problems were
intended to assess logical reasoning abilities and did not require any
prior knowledge of law to solve.

4.1.4. Procedure

Upon entering the study on Prolific, participants were redirected
to our application. After consenting to participate, we quantified user
expectations before interaction with the systems. A series of stud-
ies (Bosch et al., 2024; Kloft et al., 2024; Kosch et al., 2023; Villa
et al., 2023) found that users hold high expectations regarding their
performance with Al systems, yet are largely unaware of their ac-
tual performance when completing tasks with Al-assistance — in other
words, they fail to monitor their performance. Participants estimated
how many of the 20 items they expected to answer correctly on
a 0-100 numeric scale (pre-task expectation). After completing the
task, they provided the same estimate again (post-task expectation).
Collecting users’ expectations both before and after interaction serves
two purposes. First, pre-task expectations capture anticipatory beliefs
that may influence subsequent behavior (a placebo-like mechanism that
has been documented in HCI research on Al systems (Bosch et al.,
2024; Kosch et al., 2023). Second, the difference between post- and
pre-task scores provides an individualized index of expectation, which
we use as a predictor of performance-monitoring accuracy models (see
Analysis section). This also aligns with the original study of Jansen
et al. (2021).

After measuring expected performance, they were briefly intro-
duced to the task and allowed to test the chat interaction. Afterwards,
participants engaged in a task to assess their logical reasoning skills
by solving a series of LSAT problems. Before submitting their final
answers, they were asked to interact with ChatGPT, ensuring they
provided at least one prompt per problem. After completing each
question, participants rated their confidence in their response using a
100-step slider ranging from “unsure” to “certain”. Participants were
permitted unlimited text-based interaction with ChatGPT, allowing
them to seek as much assistance as they felt necessary during the
problem-solving process. After solving the problems in a randomized
order (see Section 4.1.3), participants were again asked to complete
the expectations questionnaire in the past tense. They also responded
to the SNAIL questionnaire (Laupichler et al., 2023) and filled in their
demographic information, including age, gender, occupation, education
level, English proficiency, and whether they had taken the LSAT before.
Study 1 took, on average, 42 min to complete.
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8.1 - It has been proven that the “lie detector” can be fooled. If one is truly

aware that one is lying, when in fact one is, then the “lie detector” is

worthless. Without contradicting his or her own statements, the author of @)
the above statement might present which of the following arguments as a

strong point in favor of the lie detector?*

Circumstantial evidence might be more useful in a criminal case than is personal testimony.
The methodology used by investigative critics of the lie detector is itself highly flawed.
People are never “truly unaware” that they are lying.

o The very threat of a lie-detector test has led to a significant number of criminals to confess.

Law-enforcement agencies have purchased too many detectors to abandon them now.

8.2 - How confident are you that your response is correct?*

Unsure o Certain

(D Prompt ChatGPT on the right to solve the problem.
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statements, we need to focus on the reasoning within the initial statement:

1. It has been proven that the lie detector can be fooled.
2. If someone is truly aware they are lying, the lie detector is worthless.

Given these points, the author acknowledges the limitations of the lie detector. Let's
evaluate each option to see if any can support the utility of the lie detector without
contradiction:

1. **Circumstantial evidence might be more useful in a criminal case than is personal
testimony.**

- This doesn't directly defend the lie detector; it just shifts the focus to other types
of evidence.

2. **The methodology used by investigative critics of the lie detector is itself highly
flawed**

- This could undermine the validity of critiques but does not offer a strong positive
argument in favor of lie detectors.

3. **People are never “truly unaware” that they are lying**
- This directly contradicts the author's acknowledgment that if someone is truly
aware they are lying, the lie detector is worthless.

4. **The very threat of a lie-detector test has led to a significant number of criminals
to confess.**
- This suggests an i

63%

Fig. 1. Our online study application featured a horizontally split interface, with survey items and logical reasoning problems presented on the left and a ChatGPT

interface on the right.

4.1.5. Apparatus

We inspected the software and flow of Jansen et al. (2021)
and carefully replicated it, integrating a side-by-side view of ChatGPT
and the survey interface (Fig. 1). We wused ChatGPT-40
(gpt—-40-2024-05-13) due to its widespread use in enhancing cog-
nitive task performance (Bastani et al., 2024; Draxler et al., 2023,
2024). A custom interface (Fig. 1) was built to log user interactions,
enabling qualitative chat analysis. The application automatically col-
lected survey responses and chat logs and recorded them at the end of
the study. We included a button to copy each problem and its answer
options to the clipboard so they could be easily pasted into the chat.

4.1.6. Analysis

We analyzed the data in five steps. First, we compared our sample
performance to that of Jansen et al. (2021) and to the performance
of Al alone. This allowed us to analyze where Al augments human
performance (i.e., human-AlI interaction outperforms a no-Al group)
and human-AI synergy (i.e., human-AI interaction outperforms AI).
We analyze both average performance and its distribution. Second,
we analyzed metacognitive (RQ1) accuracy on a task level - the
difference between objective and estimated performance' comparing
human-AI interaction to a no-Al group — and trial-level confidence
ratings to assess metacognitive sensitivity (RQ2). With this, we can
analyze the metacognitive performance of users when interacting with
Al globally (accuracy) after the tasks and locally (sensitivity) after
each decision. Note that for Jansen et al. (2021), the question was
(“How many of the 20 logical reasoning problems do you think you
solved correctly?””) while in our sample using Al, we asked: ”Using
the AL, how many of the 20 logical reasoning problems do you think
you solved correctly?”. Next, we correlated metacognitive performance
metrics with performance and Al literacy measures to explore what
predicts low metacognitive performance in human-AlI interaction, for a
similar analysis approach, see McIntosh et al. (2019). Fourth, we used a
computational model of performance and performance assessments to
compare our sample and Jansen et al. (2021) to estimate how AI affects
the DKE (RQ3). Lastly, we qualitatively analyzed participant strategies

! In line with Ehrlinger et al. (2008), we focus on numeric estimates of
performance after the task, not relative performance in comparison to others.

and how they conceptualize the human-AlI relation.? We use frequentist
statistics (a= 5%) for simple statistical tests (e.g., paired and unpaired
t-test and Pearson correlation) in the first four analyses and Bayesian
statistical modeling for the computational model. Note that we focus
only on these analyses in the exploration of our data for the current
paper; however, we encourage the re-analysis and further exploration
in the openly available dataset: https://osf.io/svax9/overview.

4.2. Findings

4.2.1. Human-AI composite performance

To see whether there is a synergy effect of using ChatGPT in the
LSAT (i.e., Human-AI performance > Al performance), we compared
the average ChatGPT performance (100 runs at M = 13.65) to our
users’ average performance (M = 12.98, SD = 2.88). We find a
significant difference, with participants performing slightly worse than
ChatGPT alone 7(245) = —3.66, p < .001,d = —0.23 in the task. Next, we
compared our sample’s performance to Jansen et al. (2021) representa-
tive sample of 3543 participants, who completed the same task without
any assistance (M = 9.45, SD = 3.59). We find that in our sample,
participants performed significantly better with ChatGPT assistance
1(245) = 19.23,p < .001,d = 1.23 as compared to the Jansen et al.
(2021) sample. Therefore, while, on average, there is no human-AI
synergy, we do find that ChatGPT use can augment human performance
for solving the LSAT logical problems (i.e. human—AI performance >
human performance).

Looking at individual performance, we can find indications of
human-AI synergy. The difference between our sample’s and ChatGPT’s
performance is rather small, at less than one point. 55.28% (136 of 246)
of our participants performed better than ChatGPT. However, 89.43%

2 Given the large samples in our study and the ceiling effects encountered
Fig. 4(a), we do not test for the normality of residuals of our variables. Instead,
we model the data using a final Bayesian computational framework, which
allows for more flexible assumptions and can account for ceiling effects in our
main analysis. This approach provides more robust estimates by incorporating
uncertainty in a probabilistic manner rather than relying on strict parametric
assumptions.
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Fig. 2. Comparison of performance scores between participants interacting with ChatGPT and a dataset without AI (Jansen et al., 2021). The blue density curve
represents the distribution of performance scores in a sample of 246 participants using ChatGPT, showing a peak in performance at around 14 points. The yellow
density curve corresponds to a larger sample (n = 3543) from the Jansen et al. (2021) dataset, with lower overall performance scores. The vertical dashed line

indicates the mean performance score in the ChatGPT simulation.

(220 of 246) in our sample performed better than the average score of
the Jansen et al. (2021) sample (see also Fig. 2).

Therefore, while overall performance increased with the use of
ChatGPT augmenting the human ability to solve LSAT problems, on
average, we do not find a human-AI synergy. The composite perfor-
mance of ChatGPT and the participant overtook the performance of
ChatGPT alone for only slightly more than half of the participants
in our sample. With our chat-based Al-assistance’s ability to enhance
performance established in human augmentation but not synergy, we
can now focus on investigating metacognitive abilities.

4.2.2. Metacognitive accuracy and sensitivity

RQ1 investigated whether interaction with AI affects metacogni-
tive accuracy, that is, how closely participants’ estimated performance
aligns with their actual performance. Our data shows that participants
were inaccurate in assessing their performance after task completion,
as indicated in the item “Using the AI, how many of the 20 logical
reasoning problems do you think you solved correctly?”, see also Table
1. On average, they estimated solving about 17 out of 20 items (M
= 16.50, SD = 3.72). This overestimation of about 4 points could be
distinguished from 0, #(245) = 14.14,p < .001,d = 0.9.

To test whether Al use amplifies overestimation, we applied the
same metric to the (Jansen et al., 2021) dataset (no-Al condition; N
= 3543 vs. N = 246 in our Al group). Comparing estimates of per-
formance and actual performance, we find that the no-Al participants
also significantly overestimated their performance, #(3542) = 17.35,p <
.001,d = 0.29, but the effect size was substantially smaller than in
the AI group (d = 0.93). Note that for a more thorough investation
of RQ1 a true experiment is needed comparing the biased estimation
more closely.

To see whether participants track information in each trial and
answer RQ2, we turn to metacognitive sensitivity that we estimate from
confidence ratings when making the decision. After removing partici-
pants with only one level of correctness, i.e., all correct or all incorrect,
we further analyzed data from 245 participants. The mean confidence
(rated on a scale from 0-100) for correct answers was 82.49 (14.24)
and for incorrect answers 77.00 (16.52), 1(244) = 8.21,p < .001,
d = 0.52. To evaluate sensitivity more granularly, we conducted a
Receiver Operating Characteristic (ROC) analysis. ROC analysis is a
technique used to assess the performance of a judgment by plotting
the true positive rate against the false positive rate across different

thresholds. Here, we applied ROC analysis to understand how well
participants’ confidence scores predicted whether their responses were
correct (see Fig. 3A).

By using ROC analysis, we obtain a metric, the area under the curve
(AUQ), that quantifies how effectively a participant’s confidence ratings
differentiate between correct and incorrect responses. An AUC value of
0.5 indicates no better-than-chance discrimination, while higher values
reflect greater sensitivity, meaning the participant’s confidence reliably
tracks correctness. Thus, the ROC analysis provides a nuanced indi-
vidual, trial-level measure of metacognitive accuracy beyond simple
average confidence or aggregate performance estimates.

The mean AUC was .62 (SD = 11.2) which could be distinguished
from 0.5 (#(244) = 16.02,p < .001,d = 1.02). Most participants’ (210
out of 246; 85.37%) metacognitive AUC values are above .50 (random
guessing). This means that confidence scores indicate participants’
metacognitive sensitivity on a trial level in human-AI interaction.

Prior metacognition work treats AUC values above .7 as “moderate
sensitivity”’, where participants are able to separate correct from in-
correct answers (Ais et al., 2016; Clayton et al., 2023; Fleming & Lau,
2014). Our Al-assisted group achieved a mean AUC of .62, significantly
above chance, yet noticeably attenuated compared to the benchmark.
This value is sufficiently high to indicate that participants engaged in
metacognitive processing.

Although participants’ mean AUC (.62) exceeded chance, it fell
significantly short of the commonly used “benchmark” of .7, #(244) =
—11.73,p < .001,d = —0.75, indicating a deficit in trial-level sensitivity
relative to that standard. Additionally, a mean AUC of .62 is small
enough to confirm our prediction that Al support would temper partic-
ipants’ ability to distinguish right from wrong answers. This measured
attenuation aligns with our hypothesis that interacting with the Al
improves accuracy but impairs the ability that underlies effective self-
monitoring. Against those reference points, our participants’ mean AUC
= .62 indicates they are relatively worse at monitoring their accuracy
(above chance), yet below the level typically considered acceptable.
Note that for the remaining 36 participants, confidence ratings could
not distinguish between correct and incorrect trials (for the distribution
of AUC values, refer to Fig. 3B). For these participants, confidence
judgments were effectively random or worse than random chance,
indicating that they tended to be as confident or even more confident
about incorrect responses than correct ones. This pattern suggests a
miscalibration in their metacognitive judgments, where confidence fails
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Fig. 3. (A) Receiver Operating Characteristic (ROC) curves showing the relationship between True Positive Rate (Sensitivity) and False Positive Rate (1 —
Specificity) for participants (color) and pooled across participants (black). The dashed diagonal line indicates the line of no discrimination (random guessing).
For each participant, we generated a ROC curve, colored lines, as well as one from pooled responses (black line), which illustrates the trade-off between the
true positive rate (i.e., the proportion of correct judgments identified as correct) and the false positive rate (i.e., the proportion of incorrect judgments identified
as correct) across various confidence thresholds. High metacognitive sensitivity would position the curves close to the y-axis and the top of the graph, and low
metacognitive sensitivity to the dashed line. We can compute the area under the curve (AUC) as an estimate of metacognitive sensitivity. (B) Distribution of AUC
values across all participants, with a peak around 0.6, suggesting variability in metacognitive sensitivity, with most participants performing above chance level

(AUC = .5).

to serve as a reliable indicator of actual performance. Thus, our sample
exhibits very low metacognitive sensitivity and, in consequence, low
metacognitive monitoring. Note, however, that for a robust thorough
investigation of RQ2 a true experiment is again needed comparing
sensitivity across groups.

4.2.3. Correlation of metacognitive ability, performance, and Al literacy
(SNAIL)

A number of significant relationships were found when correlating
several metacognitive indices with LSAT performance and Al literacy,
see Table 2. We observed a positive relation between performance and
participants’ average confidence estimates. Participants who performed
well were also more confident on average. However, those who were,
on average, more confident also overestimated their performance due
to increased metacognitive bias. This is probably due to the relationship
between SNAIL factors and performance estimates, where participants
who expressed more technical knowledge and more critical appraisal
also estimated their performance to be relatively higher. However,
those with high technical understanding were also less accurate in
their metacognitive judgments. All SNAIL factors correlated positively
to average confidence. Note that these correlations are rather small
and should thus be interpreted with caution. Metacognitive sensitivity
(AUC and Aconf) was not related to Al literacy, performance, or
metacognitive accuracy.

4.2.4. AI use cancels the Dunning-Kruger effect

RQ3 aimed to determine whether Al interaction would affect the
classic DKE pattern in which lower performers overestimate their
abilities while higher performers underestimate them. The correlation
between estimated performance and actual performance is small to
medium-sized (see Table 2, and for visual representation Fig. 4(a)).
While some participants were very accurate in estimating their per-
formance, some participants were considerably off in their estimates
(Fig. 4(a)). This suggests the possibility of a DKE-like pattern, where
ability in a task is related to the metacognitive ability to judge one’s
task performance. For the classical quantile plot, refer to Fig. 4(b).%

3 Note, however, that this plot can be misleading (Gignac & Zajenkowski,
2020).

We calculated the difference between quantiles to test whether
metacognitive accuracy was worse in the low-scoring quantile than
in the high-scoring quantile. Both quantile’s metacognitive accuracy
differed from 0, (Q1: #(109) = -10.15,p < .00l,d = -0.97, Q4:
t(21) = =3.64,p = .002,d = —0.78), probably due to the overall bias.
However, we found that the difference for Q1 is larger than for Q4,
t(130) = 2.79,p = .006,d = 0.49 (see also Fig. 4(b) and Table 1).
Note that this pattern of effect could be driven by metacognitive bias
alone. To establish a DKE, we must first quantify the metacognitive
noise in our sample. To do so, we employ a Bayesian computational
model,* a hierarchical Bayesian model to jointly estimate participants’
objective and perceived performance while accounting for latent skill,
metacognitive bias, and metacognitive noise.® To allow for a baseline
comparison of the DKE, we modeled the data jointly with that of Jansen
et al. (2021), whose study did not involve Al. This approach enables us
to compare the Dunning-Kruger effect in our sample, where participants
used AI, with the non-Al sample of Jansen et al. (2021). The model
accounts for ceiling effects in performance estimates, treating scores of
20 as censored observations.

Specifically, our hierarchical Bayesian model accounts for the pres-
ence of Al (k = “AI” or “no AI”) in estimating both the participants’
achieved performance and their estimated performance. It also inte-
grates latent skill, metacognitive bias, and group-level metacognitive
noise, which scales the bias and latent skill. Metacognitive bias, in the
model, reflects each person’s over- or under- estimation of their skill,
while metacognitive noise reflects the lack of information regarding
their own skill.

Let 6; represent the relative latent skill for participant i with the
prior 6, ~ N'(0,2).

The objective performance y,;; is modeled as:

Yobj,i ~ Binomial (ngps, Dapporox(6))) »

4 For a guide on Bayesian techniques, see Biirkner (2017), Dix (2022), Kay
et al. (2016), Schad et al. (2021), van de Schoot et al. (2021), we used the
tutorial of Nathaniel Haine’s as a starting point for our modeling efforts: http:
//haines-lab.com/post/2021-01-10-modeling-classic-effects-dunning-kruger/.

5 For a theoretical model, see Burson et al. (2006).


http://haines-lab.com/post/2021-01-10-modeling-classic-effects-dunning-kruger/
http://haines-lab.com/post/2021-01-10-modeling-classic-effects-dunning-kruger/
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Table 2
Correlation table of metacognitive measures and Al literacy as measured by the SNAIL.
AEP Estimate Performance Aconf puconf AUC SNAIL TU SNAIL CA SNAIL PA
AEP
Estimate 0.72%%*
Performance —-0.43 0.327%%*
Aconf —-0.04 -0.03 0.01
pconf 0.24%** 0.46%** 0.27%** -0.10
AUC 0.03 0.05 0.03 0.59%**
SNAIL TU 0.21%* 0.17** —-0.06 -0.12 -0.10
SNAIL CA 0.10 0.14* 0.06 0.04 0.03 0.49%**
SNAIL PA 0.05 0.10 0.06 0.01 0.05 0.57%** 0.81%**

Note. d f = 243, AEP represents the difference between performance and estimated performance (metacognitive accuracy). Performance refers
to the achieved task performance. Aconf is the difference between predicted and actual confidence, while uconf is the mean confidence (average
confidence ratings). AUC refers to Area Under the Curve, with a higher AUC value indicating a more reliable confidence score in reflecting
participants’ correctness; SNAIL TU stands for the Technical Understanding score, SNAIL CA represents the Critical Appraisal score, and SNAIL

PA is the Practical Application score.
* Indicates p < .05.

** Indicates p < .01.

*** Indicates p < .001.
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Fig. 4. Correlation of estimated and achieved LSAT score from different perspectives, individual Fig. 4(a) vs. quartile-level Fig. 4(b) for the Al group in Study 1.

where n,y; is the total number of items and @04 () is the approxima-
tion for the cumulative standard normal distribution.

Perceived performance yp,; is influenced by group level bias b,
latent skill §; and noise o;, which scales the difference of bias b, and
latent skill 6;:

Here, np,, is the total number of perceived items. The priors for bias
b, and noise ¢, are the following:

b ~ N'(0,2), o} ~LogNormal(0,2).

Our model mitigates the issue around regression to the mean by
explicitly modeling latent skill 6, as a continuous variable with a
flexible distribution. By incorporating noise o, that scales skill level ;
and bias b, the model allows for greater variability in judgment among
low-skilled participants. This scaling effect, coupled with a bias term
b, and hierarchical priors, reduces the tendency for all participants to
regress toward a single mean. For a DKE to exist, bias that is 5, > 0
and noise that is o, > 1 has to be satisfied. If only metacognitive bias is
driving a DKE pattern, then 6, will be centered at 1 (values of ¢, under
1 and close to zero would mean that high-performers would be less
accurate in estimating their performance®). The bias parameter for our
Al-interaction sample, b,;, showed a median of 0.45 (95% HDI [0.32,
0.60]). The consistently positive bias indicates that individuals, when

6 To fit our data into the model, we used the STAN-sampler (Carpen-
ter et al., 2017). Four Hamilton-Monte-Carlo chains were computed, each

using Al tend to overestimate their abilities. We also find a bias b,,,,
for the non-AI group of Jansen et al. (2021) (Median = 0.23 (95% HDI
[0.21, 0.25], p, = 0.0%) although when comparing posterior samples
(see Fig. 5), 99% of posterior samples were larger in the Al group as
compared to the non-augmented sample.

To understand how metacognitive noise affected self-assessment,
we can turn to o,. For the non-Al group, we find a o,,,; above 1,
indicating noise affecting self-assessment. This group had a median of
1.78 (95% HDI [1.69, 1.88], p, = 0.0%, see Fig. 5B), indicating noise in
judgment for the sample of Jansen et al. (2021). Combined with bias,
this contributes to the DKE (see also Fig. 5C for posterior predictions
from the model). In comparison, our sample, which used AI to complete

with 15,000 iterations and a 30% warm-up. Trace plots of the Markov-
chain Monte-Carlo permutations were inspected for divergent transitions and
autocorrelation, and we checked for local convergence. All Rubin-Gelman
statistics (Gelman & Rubin, 1992) were well below 1.1, and the Effective
Sampling Size was over 1000.

We then analyzed the posterior of the model. To investigate a parameter’s
distinguishability from zero, we utilized p,, which resembles the classical p-
value but quantifies the effect’s likelihood of being zero (for ») and one (for
o) or opposite (Hoijtink & van de Schoot, 2018; Shi & Yin, 2020). Effects with
pp < 2.5% were deemed distinguishable. We also calculated the 95% High-
Density Interval (HDI) for each model parameter; for visualization of prior
and posterior, see Fig. 5.
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Fig. 5. Comparison of posterior distributions with median and 95% HDI for the model parameters b for bias in each group (Plot A) and ¢ (Plot B). The posterior
distributions of the AI group (in blue) and no-AlI group (in yellow). In Plot A, kernel-density curves show the full posterior for each group (blue = Al, yellow =
no-Al); vertical ticks mark the posterior median and the shaded band the 95 HDI. All mass lies to the right of zero, but the Al density is clearly shifted further
right, indicating stronger overestimation bias. In plot B, densities are plotted on the same scale as in (A). The no-Al posterior peaks well above the neutral point
of o, signifying noise that scales bias by skill and thus sustains a Dunning-Kruger gradient. In contrast, the AI posterior is centered almost exactly on ¢ = 1,
implying that bias no longer increases as skill decreases. Plot C shows the average posterior predicted values for percent correct achieved (x-axis) and percent
correct expected (y-axis) for each group. The s-shape around ideal metacognitive accuracy (gray line) indicates a DKE with low-performers overestimating their

performance more than high-performers (yellow; no Al group).

the task, was not affected by the DKE (Median = 1.01, 95% HDI [0.84,
1.19], p, = 45.66%). Given the non-overlapping distributions (0%
overlap) and the small HDI’s, we can assert that with ¢,; being around
1, scaling of the equation of bias and skill is not present in our sample.
This finding aligns with our “augmentation-hypothesis”: as AI’s outputs
levels individual skill differences, even lower performers achieve a
higher performance level, resulting in uniform overestimation rather
than the classic Dunning-Kruger pattern. Hence, when augmented with
Al, we observe no DKE (see again Fig. 5C).

4.2.5. Qualitative data

In addition to quantitative measurements, we analyzed the qual-
itative data collected during Study 1 using an inductive thematic
approach (Clarke & Braun, 2017). This included both the prompts
participants entered into the Al chatbot interface and their responses to
an open-ended question at the end of the questionnaire. The analysis
of the prompts provided insight into how participants interacted with
the Al chatbot and their perceptions of it. The prompts were filtered
to exclude those that were a direct copy from the task, ensuring that
only meaningful interactions were kept for this analysis. The remaining
prompts were then inductively analyzed to identify recurring themes
(see Section 4.2.6). Responses to the open-ended question were ana-
lyzed to explore differences in Al perception during the interactions,
where recurrent themes were found (see Section 4.2.6).

4.2.6. Analysis of prompts

In our study, we collected 6629 prompts from 246 participants,
each answering 20 logical reasoning questions using the AI chatbot.
Although participants could use as many prompts as they wished (with
a minimum of 1 per question), in practice, they seldom did. Across the
246 participants, the mean number of prompts per question was M =
1.15 (SD = 0.34). Table 3 shows the maximum number of prompts per
participant across all items: 46% of participants prompted the system
only once per question, and only 8% exceeded three prompts.

Analysis of open-ended questions. A qualitative analysis of the open-
ended question “Please describe how you used the AI Chatbot” revealed
diverse types of perceptions and interactions with Al among partici-
pants, highlighting varying degrees of user reliance, collaboration, and
trust.

The majority of participants demonstrated a high level of trust in Al,
often accepting its suggestions without further inquiry. This behavior
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Table 3

Maximum number of prompts per participant
across all pages. Participants tended to prompt
ChatGPT only one time more frequently. Only
8% of the time participants exceeded 3 prompts.

Count

113 (46%)
90 (37%)
23 (9%)
10 (4%)

4 (2%)

6 (2%)

Maximum number of prompts

g s wN =

raises concerns about overreliance on Al, as noted by Lu and Yin
(2021). 12.60% of participants perceived Al as a collaborative partner,
using inclusive language and viewing it as part of a joint effort rather
than just a tool. Another 21.54% of participants viewed Al strictly as
a complementary tool, using it cautiously for verification while main-
taining control of the problem-solving process. Finally, 6.5% either
provided inconclusive responses regarding the strategy used or did
not find the Al tool useful. The data reveals diverse ways participants
perceived Al, providing insights into HAI dynamics and individual
variability.

4.3. Interim discussion

We found that using ChatGPT augmented our sample beyond a
no-Al benchmark (i.e. Al augmentation) but that only a little more
than half of our sample could surpass the Al alone (i.e. human-AI
synergy). We found that most people overestimated their performance
with AI and that there was no indication of a DKE when using the Al
system. This may be due to participants’ tendency not to reflect on
their performance and low metacognitive sensitivity (on an absolute
level, participants do not perform well), which is corroborated by our
qualitative reports of people copying and pasting questions to the chat
interfaces and then taking the AI’'s answer without reflection.

5. Study 2: Incentivizing metacognitive thinking

Our descriptive data revealed that most users rarely prompted Chat-
GPT more than once per question. This shallow level of engagement
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Table 4
Participant approaches to Al use in study 1.
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Category Description

Actual (M + SD) Perceived (M + SD)

High level of trust

Participants relied heavily on AI (“blindly
trusted”), copying and pasting questions

13.014 + 3.062 16.844 + 3.679

without critically assessing AI’s outputs or
further inquiry. 58.94% (145 out of 246)

Collaborative Participants perceived Al as a collaborative 13.065 + 3.176 18.161 + 1.881
Partner partner rather than a mere tool, engaging

in joint problem-solving and using inclusive

language (“we did this”) when describing

their interactions. 12.60% (31 out of 246)
Complementary Participants used Al strictly as a 10.5 + 3.317 16.000 + 6.733
Tool complementary tool for verification of their

independently formulated answers,

maintaining control of the process. 21.54%

(53 out of 246)

Inconclusive/Did
Not Use

Participants either provided inconclusive
responses regarding the strategy used

13.302 + 2.729 16.302 + 4.012

during the experience or did not find the Al

tool useful. 6.91% (17 out of 246)

may have limited the cues needed to calibrate confidence and allow
for accurate self-monitoring. It is therefore plausible that encouraging
or experimentally requiring multiple prompts could provide better
feedback loops, enhancing users’ metacognitive sensitivity.

To address the potential confound of a lack of motivation in our
sample to engage in metacognitive monitoring, we conducted a second
study in which participants received a monetary incentive for accurate
judgments across the task; for a DKE study employing incentives,
see Ehrlinger et al. (2008) Study 3. If participants monitor their perfor-
mance when incentivized, the DKE could resurface. Given that Jansen
et al. (2021) did not incentivize participants for accurate metacognitive
judgments, this also mandated the sampling of a no-Al group within our
study setup. We thus sampled another 250 participants for each the Al
and the no-Al group to see if an incentive can motivate metacognitive
monitoring and analyze the quantitative data. All data and analysis
scripts for Study 2 can be found at https://osf.io/svax9/overview.

5.1. Method

We recruited 500 English-speaking participants located in the USA
through Prolific. The sample was split into two groups: 250 participants
completed the task without Al assistance (no-Al group) and 250 partic-
ipants completed the task with AI assistance (AI group). Participants
solved the same 20 logical reasoning problems used in Study 1. We did
not collect the SNAIL for the no-Al group. Study 2 took, on average,
25 min to complete for the no-Al group and around 52 min for the Al
group. Each participant was compensated 7 pounds per hour.

To motivate accurate self-assessment, participants in both groups
were informed they would receive monetary compensation based on
the accuracy of their performance estimates (compensation would
be given to participants whose presumed number of correct answers
closely matched their actual score). This incentive aimed to motivate
participants to engage critically with the task and closely monitor their
performance. All participants received full benefit compensation of 0.50
pounds (around 8% increase) regardless of their achieved performance.
Similarly to Study 1, we included an attention check where participants
were required to read a brief study and task description. They then
answered two multiple-choice questions, one about the topic (logical
reasoning) and another regarding how they could receive additional
compensation (good judgment).

From 500 participants, we analyzed 452 participants (age: M =
37.24,SD = 13.36): 245 in the AI group and 207 in the no-Al group.
Across both groups, 48 participants were excluded (3 for missing data, 3
for invalid performance estimates (exceeding 20 correct answers), and
42 for too low completion times.
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202 participants identified as female, 242 as male, 6 as non-binary,
1 as two-spirit, and 1 who preferred not to disclose. Their high-
est educational degrees included 21 doctoral, 132 Master’s-level, 194
Bachelor’s-level, 64 upper secondary school, and 41 vocational quali-
fications. Regarding English proficiency, 391 participants identified as
native speakers, 56 as fully fluent, 4 as conversationally fluent, and 1
as having basic proficiency.

For the Al group, a subset of participants (26) reported prior ex-
perience taking the LSAT. Their performance in this study (M =
13.50, SD = 1.98) was comparable to those without prior LSAT expe-
rience (n = 219; M = 13.25,SD = 2.55), and they were not excluded
from the analysis. For the no-Al group, 25 participants reported prior
LSAT experience, performing similarly (M = 9.50, SD = 4.06) to those
without LSAT experience (n = 182; M = 9.52, 5D = 3.60).

5.2. Results and discussion

Participants in the AI group performed on average slightly worse
as compared to Al alone (M = 13.31, SD = 2.44, 1(244) = -2.17,p =
.031,d = —0.14) but better than the no-Al group (M = 9.71, SD =
3.59, #(450) = 12.60, p < .001,d = 1.18). Therefore, we can assert that,
on average, using Al has augmented performance but not that there is
a synergy effect. In the Al group, 59.18% of participants scored higher
than ChatGPT, with a total of 145 participants out of 245 surpassing its
performance. In the no-Al group, 14.49% of participants scored higher
than ChatGPT, corresponding to 30 participants out of 207, see also
Fig. 6. Therefore, performance in Study 2 mirrors Study 1.

Investigating metacognitive accuracy for each sample, we find that
in the AI group, participants overestimate their performance (M =
17.13, SD =3.16), which differed significantly from zero when sub-
tracting individual performance (#(244) = 18.33,p < .001,d = 1.17).
The same was found for the no-Al group (M = 13.62, SD = 4.14,
#(206) = 11.81,p < .001,d = 0.82). Both quantile’s metacognitive
accuracy differed from 0 for AI (Q1: #(99) = —12.78,p < .001,d = —1.28,
Q4: 1(23) = —3.83,p < .001,d = —0.78) as well as the no-Al group
(Q1: #51) = —10.73,p < .001,d = —1.49, Q4: 1(51) = —343,p =
.001,d = —0.48). Comparing estimates of estimated performance and
performance of the first and the fourth quartile for each group, we
find that the lowest quartile overestimates their performance relatively
more when compared to the best-performing quartile (AL #(122) =
4.06,p < .001,d = 0.73, no-AlI: #(102) = 7.25,p < .001,d = 1.42), see Fig.
7. Therefore, the pattern of results in Study 2 regarding metacognitive
accuracy also closely resembles Study 1. Comparing the confidence
for correct and incorrect responses for the Al group, we find that, on
average, participants are more confident for correct (M = 85.95, SD
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Fig. 6. Comparison of performance scores between the sample of participants interacting with ChatGPT and the sample of participants without Al. The blue
density curve represents the distribution of performance scores in a sample of 245 participants using ChatGPT, showing a peak in performance at around 14
points. The yellow density curve corresponds to the sample of participants in the No-Al group, with lower overall performance scores. The vertical dashed line

indicates the mean performance score in the ChatGPT simulation.

Table 5
Correlation table of metacognitive measures and Al literacy as measured by the SNAIL in study 2.
AEP Estimate Performance Aconf puconf AUC SNAIL TU SNAIL CA SNAIL PA
AEP
Estimate
Performance
Aconf —0.01
uconf 0.28%**
AUC 0.09
SNAIL TU —0.04 -0.21*
SNAIL CA 0.08 -0.12
SNAIL PA 0.12 -0.15* 0.83***

Note. d f = 243, AEP represents the difference between performance and estimated performance (metacognitive accuracy). Performance refers
to the achieved task performance. Aconf is the difference between predicted and actual confidence, while uconf is the mean confidence (average
confidence ratings). AUC refers to Area Under the Curve, with a higher AUC value indicating a more reliable confidence score in reflecting
participants’ correctness; SNAIL TU stands for the Technical Understanding score, SNAIL CA represents the Critical Appraisal score, and SNAIL

PA is the Practical Application score.
* Indicates p < .05.

** Indicates p <.01.

*** Indicates p < .001.

= 13.71) as compared to incorrect responses (M = 82.57, SD = 15.61;
1(244) = 5.39,p < .001,d = 0.34). While confidence was descriptively
lower for the no-Al group, we find the same pattern (correct: M =
77.57, SD = 14.85; incorrect: M = 73.04, SD = 16.73; #(205)
6.33,p < .001,d = 0.44). A slight increase in confidence when accurate
metacognition is incentivized is consistent with Ehrlinger et al. (2008).

Conducting a ROC analysis for each group, we found that most
participants could distinguish between correct and incorrect answers.
The mean AUC for the Al group (M = .62, SD =0.12) and the no-Al
group (M = .61, SD = 0.11) differed from .5 (AL 7(244) = 15.30,p <
.001,d = 0.98; no-AlL #(205) = 14.26,p < .001,d = 0.99), with most
people exceeding the threshold of .5 AUC (AI: 196 of 245; no-Al: 172
of 207). Consistent with Study 1, participants’ mean AUC in Study
2 also fell significantly below the “acceptable” .70 benchmark (see
Section 4.2.2) (AI group: #(244) = —10.56,p < .001,d = —0.67, no-Al
group: #(205) = —11.15,p < .001,d = —0.78), showing a decrease of
metacognitive sensitivity.

The pattern of correlations of performance, metacognitive measures,
and Al literacy also resembled Study 1 in the Al group, see Table 5, and
in the no-Al group, see Table A.1.

Applying our computational model using the same priors and sam-
pler configuration as in Study 1, we find that both AI (Median

12

0.63 (95% HDI [0.45, 0.85], p, = 0.0%) and no-AlI (Median = 0.75
(95% HDI [0.58, 0.95], p, = 0.0%)) show a metacognitive bias without
distinguishing clearly between the AI group as compared to the non-Al
sample; 18.1% of posterior samples were larger in the Al group as com-
pared to the no-AlI group, see also Fig. 8A. Note that the discrepancy
to Study 1, likely comes from the relatively lower precision, given the
smaller sample size in Study 2. o, indicating metacognitive noise was
found to be above 1 for the no-Al group (Median = 1.53 (95% HDI
[1.18, 1.96], p, = 0.1%), resembling the DKE pattern in Study 1, but
centered around 1 for the Al group (Median = 1.13 (95% HDI [0.93,
1.361, p, = 10.1%)), see also Fig. 8B. 2.46% of posterior samples for o
in the no-Al group exceed the AI group. Therefore, metacognitive noise
does not scale the bias for the Al group, but it does for the no-Al group.
We replicate the pattern of results in Study 1 again; see also Fig. 8C.
The difference in shape for Fig. 8C and Fig. 5C can be explained by the
difference in range, especially regarding high performance, see Fig. 2
and compare to Fig. 6.

Overall, we can replicate the results of Study 1 in Study 2. Giving
an incentive for accurate metacognitive judgments did not activate
a DKE pattern for participants using Al Notably, despite the added
0.50 pounds (~ 8% of overall compensation) performance bonus, we
observed no improvement in metacognitive accuracy relative to Study
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Study 2.
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(b) Classical Dunning-Kruger Quartile-plot.
Comparison of Mean Estimated and Mean Achieved
Scores Across Quatrtiles for the Al group in Study 2.

Fig. 7. Correlation of estimated and achieved LSAT score from different perspectives, individual Fig. 7(a) vs. quartile-level Fig. 7(b) for the AI group in Study 2.
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Fig. 8. Comparison posterior distributions with median and 95% HDI for the model parameters b for bias in each group for bias (Plot A) and ¢ (Plot B) for the
second study. The posterior distributions of the AI group (in blue) and no Al group (in yellow). Plot C shows the average posterior predicted values for percent
correct achieved (x-axis) and percent correct expected (y-axis) for each group. The s-shape around ideal metacognitive accuracy (gray line) indicates a DKE with
low-performers overestimating their performance more than high-performers (yellow; no Al group).

1. Both the AI and no-Al groups continued to overestimate their perfor-
mance by similar margins, suggesting that even with incentive alone,
it did not substantially improved self monitoring. This pattern implies
that participants were already sufficiently engaged in Study 1, and
that incentive-driven effort is unlikely to be the primary driver of
metacognitive calibration. Nevertheless, we can see that the absolute
levels of performance overestimation are slightly larger for the no-Al
group in our sample (e.g., comparing estimated performance across
studies).

6. Discussion

This paper offers insights into metacognitive monitoring in a
human-AI interaction context by examining how users with varying
competence interacted with AI during logical reasoning tasks. We
explored the impact of Al on metacognitive accuracy, focusing on the
DKE, user confidence, and AI literacy in two studies. Our findings
reveal a significant inability to assess one’s performance accurately
when using Al equally across our sample.

6.1. Effect of Al literacy on metacognition in human-Al interaction

While AI users in our sample outperformed those in Jansen et al.
(2021), they consistently overestimated their performance by about
four points, aligning with previous research (Kloft et al., 2024; Kosch
et al., 2023; Villa et al., 2023). The moderate correlation between es-
timated and actual scores (Table 2), with many participants estimating
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their joint performance with Al higher than the most skilled in the
sample (Fig. 4(a)), suggests that Al improves performance but leads to
highly biased self-assessments.

This disconnect between actual and perceived performance mirrors
earlier findings on overtrust and overreliance in AI systems (Kloft
et al., 2024; Lu & Yin, 2021; Shekar et al., 2024). Overconfidence may
impair users’ ability to evaluate their performance without Al, posing
challenges for designing balanced human-Al interfaces. The classic
DKE, where lower performers overestimate and higher performers un-
derestimate their performance, disappeared with Al use, suggesting
that while AI levels performance, it does not correct inflated self-
assessments. We found that participants, regardless of their skill level,
exhibited significant overestimation. While such leveling might seem
beneficial for the lowest performing quartile, who are often unskilled
yet unaware (Ehrlinger et al., 2008), it raises concerns about accurate
self-awareness across all performance levels. In particular, this uniform
overestimation aligns with our “augmentation-hypothesis”, in which
AT’s consistently correct outputs overshadow skill-based differences,
improving low performers to a higher baseline at the cost of leading
to generalized overconfidence. Metacognitive bias was doubled for the
entire sample compared to Jansen et al. (2021) in Study 1, although
there was a lack of a large difference in overestimation between groups
in Study 2.

A skeptic might attribute the observed metacognitive distortion to
the quasi-experimental sample in Study 1. Yet, the randomized replica-
tion (Study 2) still shows robust overestimation. Its smaller magnitude
arises from a ceiling in self-ratings — censored in our hierarchical
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Bayesian model — which nevertheless recovers a clear Al-linked bias.
Al assistance also shifts the noise parameter toward unity, eliminating
the skill-based damping that normally curbs high-performers’ miscal-
ibration and thus flattening the DKE slope. Converging evidence —
few prompts used, the effect of Al literacy (performance estimates
and confidence rise without better calibration), and many participants
claiming near-perfect scores — supports the conclusion that Al use in
itself affects metacognitive monitoring in our studies.

We have also found an unexpected link between Al literacy and
metacognitive accuracy across both studies. Participants with higher
Al literacy were less accurate in self-assessments, contradicting the
assumption that higher Al literacy improves metacognitive monitoring
and calibration. Familiarity with Al may enhance the better-than-
average effect (Brown, 1986; Zell et al., 2020), leading to the over-
estimation of both relative and absolute performance.

Metacognitive sensitivity further explains these effects. Our ROC,
which examines how confidence ratings are distributed between correct
and incorrect responses, showed that while participants were generally
confident, they tended to overestimate the correctness of incorrect
responses, indicating low metacognitive sensitivity. This suggests that
while participants felt assured in their answers, their metacognitive
sensitivity (i.e. how well their confidence distinguished correctness on
the trial level) was consistently low. Therefore, we can find further
evidence that participants did not monitor their performance when
using the Al system to complete the task.

Qualitative data revealed varied perceptions of AI's role, from a
tool to a teammate, but these differences did not descriptively show
an effect on performance or metacognitive accuracy, see Table 4,
contradicting theories that suggest interaction framing impacts out-
comes (Pataranutaporn et al., 2023; Villa et al., 2023). Regardless of
user perception, the core metacognitive challenges in HAI persist. These
findings suggest that while Al assistance can improve task performance,
it does not proportionally enhance individuals’ metacognitive abilities,
highlighting a disconnect between cognitive performance gains and
self-evaluative insight.

Decomposing overall Al-literacy into its three sub-scales (see Table
1) reveals that Technical Understanding (TU) (i.e. familiarity with
prompting, parameter settings, and API workflows) is significantly
associated with greater mean overestimation. By contrast, Critical Ap-
praisal (CA) and Practical Application (PA) show small correlations
with overestimation. Notably, CA and PA instead predict higher mean
confidence without improving the ability to discriminate between cor-
rect and incorrect judgments (AUC), suggesting a disconnect between
global self-belief and local monitoring (disconnect between global and
local knowledge). This pattern aligns with the illusion of explanatory
depth (Fisher & Oppenheimer, 2021), where procedural fluency pro-
vides a misleading sense of ability. In our context, users who feel
technically proficient while interacting with Al tend to overestimate
their performance (even though their trial-level sensitivity remains
unchanged). Targeting this gap by, for example, prompting users to
justify AI suggestions, may help bridge global confidence and local
accuracy.

6.2. Integration into theory

High metacognitive bias leads users to overestimate their perfor-
mance and over-rely on Al systems (Ma et al., 2024), reducing their
ability to critically monitor HAI outcomes (Tankelevitch et al., 2024).
From a computational rationality perspective (Oulasvirta et al., 2022),
this bias may be an adaptive response to Al presence, as participants
may optimize perceived utility (e.g., efficiency) rather than monitoring
HAI This is supported by low metacognitive sensitivity and partici-
pants’ reliance on copy-pasting rather than higher-level metacognitive
strategies (e.g., Al as a collaborator). This aligns with Villa et al. (2023),
who found reduced error-processing when participants believed they
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were using a sham Al Therefore, our study provides further evidence
of diminished metacognitive monitoring in HAI

A lack of HAI monitoring explains several effects. First, it clarifies
why AI use has been linked to adverse learning outcomes (Abbas
et al., 2024; Bastani et al., 2024); users are overly optimistic and
fail to monitor evolving joint performance. Second, while AI tools
offer perceived empowerment and efficiency (Kloft et al., 2024; Kosch
et al.,, 2023; Villa et al., 2023), the lack of reflection hinders users’
ability to assess real benefits (placebo effect). Additionally, it explains
persistent overreliance and overtrust (Klingbeil et al., 2024), and why
Al explanations are rarely integrated into behavior (Bansal et al., 2021;
Ghassemi et al., 2021; Wang & Yin, 2021). Though we can offer
methods to improve metacognitive judgments grounded in HCI and psy-
chological research (refer to Table 6), they may provide only temporary
solutions. Rafner et al. (2022) calls for a systemic, long-term strategy,
considering cognitive and metacognitive deskilling risks at individual,
team, and organizational levels. This emphasizes the need for strategies
that foster cognitive resilience and critical engagement with Al over
short-term fixes targeting immediate metacognitive deficits.

6.3. Limitations

While our study provides valuable insights into metacognitive mon-
itoring in HAI, several limitations may affect the generalizability and
interpretation of our findings.

As Study 1 contrasted two independent datasets, it should be con-
sidered a quasi-experimental comparison, not a true randomized exper-
iment. The Al group was recruited for the present study, whereas the
no-Al benchmark relies on the open dataset of Jansen et al. (2021).
As the two samples were gathered at different times and participants
were not randomly assigned to “AI” versus “No-Al” conditions, any
differences we observe are descriptive associations rather than causal
effects. We therefore interpret Study 1 as providing suggestive, not
causal, evidence, and use Study 2’s randomized design to probe the
effect of Al support more rigorously.

Secondly, the apparent absence of the DKE (“being unskilled and
unaware” (Dunning, 2011) in our study may not fully reflect the
underlying cognitive dynamics. Al interaction may have made partic-
ipants equally skilled yet (still) unaware of their performance rather
than eliminating the DKE. Al-enhanced performance might have decou-
pled metacognitive judgments from cognitive performance (e.g., high
confidence, low sensitivity, and high bias).

Third, we relied on LSAT questions as our logical reasoning task.
While these assess logical reasoning, they may not capture the diversity
of real-world reasoning skills or domains. Furthermore, these tasks
might overlap with the AI’s training data, limiting generalizability.
However, since ChatGPT-40’s performance was imperfect (68.25%), we
believe our findings still apply to other tasks.

Fourth, our focus on LSAT-based reasoning limits the scope of
metacognitive biases across domains. Future research should use di-
verse tasks (e.g., writing creative texts with an LLM) to examine how
Al interaction affects metacognitive monitoring and whether improve-
ments in accuracy generalize across tasks.

Fifth, we found little effect of different Al strategies on metacog-
nitive accuracy and performance. The AI’s role, whether as a tool,
collaborator, or teammate, did not impact participants’ performance
evaluation (see again Table 4). Future research should explore how
different Al roles (e.g., tool vs. collaborator) influence metacognitive
accuracy and task performance.

Sixth, AI literacy was self-reported, introducing the possibility of
over- or underestimation due to psychological biases. In particular,
people may experience illusions of explanatory depth, believing they
understand Al better than they actually do, akin to the better-than-
average effect (Fisher & Oppenheimer, 2021; Zell et al., 2020). This
is closely related to the DKE, where individuals with low competence
often remain unaware of their limitations (Kruger & Dunning, 1999).
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Issues, consequences, and design principles to address impaired metacognitive monitoring in human-AlI interaction.

Metacognitive issue Consequences

Design principles

Overreliance on Al

Users trust Al outputs without

« Confidence calibration to align user

outputs critical assessment, leading to confidence with AI output uncertainty
reduced self-reflection and (Ma et al., 2024)
failure to notice Al errors. « AI uncertainty visualization to make
Al output reliability transparent
(Beauxis-Aussalet et al., 2021;
Prabhudesai et al., 2023)
« Explanatory Al interfaces to clarify
Al decision-making processes and
enable users to assess validity (Karran
et al., 2022)
Loss of Users are unable to accurately « Post-task reflection to encourage
metacognitive assess their own performance or users to evaluate their performance
monitoring monitor task progress, especially after interacting with Al (for a starting
in complex decision-making point, see Tankelevitch et al. (2024))
tasks. « Cognitive forcing strategies such as
prompts to promote critical thinking
and reduce automatic reliance on Al
outputs (Bucinca et al., 2021)
Illusion of Al-literate users tend to « “Explain-back” micro-task before
understanding over-rely and over-trust on Al submission to help calibrate illusions

outputs.

of knowledge (Fisher & Oppenheimer,
2021).

In our context, participants who self-rated higher Al literacy might also
have been more prone to overconfidence, conflating Al’s outputs with
their own abilities. Consequently, the correlation between AI literacy
and performance overestimation could be amplified simply because
people who think they know AI better also tend to inflate their self-
assessment. In line with this, self-reported Al literacy might not directly
translate into effective interactions with Al Thus, how Al literacy links
to performance and metacognition deserves to be further explored in
future studies.

Seventh, participants were required to prompt ChatGPT at least
once and then proceed with their decision, which may not reflect
naturalistic usage patterns. In real-world scenarios, users might consult
Al tools multiple times, ignore them entirely, or encounter more proac-
tive Al systems offering unsolicited suggestions. Future studies should
examine how varying degrees of user engagement with the Al and the
Al's proactiveness influence metacognitive accuracy, sensitivity, and
bias.

Finally, exploring long-term learning scenarios, such as those ex-
amined in Bastani et al. (2024), could illuminate how metacogni-
tive processes evolve as individuals repeatedly interact with AI sys-
tems. Over extended periods, accurate metacognitive monitoring may
become increasingly vital for achieving sustained performance gains
(e.g., learning calculus with Al assistance and then taking an exam); our
study cannot speak to the role of metacognition in Al-mediated learning
contexts.

6.4. Implications

Following Van Berkel and Hornbzaek (2023), we identify three types
of implications of our work: theory, design, and methodology.

Regarding theory, while biases in human-AlI interaction have been
studied (Bertrand et al., 2022; Haliburton et al., 2024; Kloft et al.,
2024; Liu et al., 2019), little research has empirically examined the
metacognitive mechanisms driving these biases. Even Tankelevitch
et al. (2024), who underscore the importance of metacognition in gen-
erative Al contexts, do not provide a dedicated empirical investigation
into these underlying processes. Applying metacognition theory to HAI
(e.g., see Colombatto & Fleming, 2023) thus offers a new perspective for
improving metacognitive monitoring in interaction design. Our findings
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additionally suggest that Al literacy alone is insufficient for achieving
optimal metacognitive abilities in HAIL

For the design of HAI interaction and its behavioral analysis, we pro-
pose that research needs to develop a new HAI interaction model that
integrates metacognition and new design concepts. In the short term,
designers should adjust interaction models, similar to Bucinca et al.
(2021), and consider broader sociotechnical risks (Rafner et al., 2022).
In the long term, HCI must develop a specific HAI interaction model
that enhances metacognitive functions, e.g., to support knowledge-
based interactions (Rasmussen, 1983). Based on the results from study
2, participants who used the LLM solved, on average, three more items,
yet overestimated their score by four points. We thus present a design
implication (see Table 6), introducing a simple “explain-back” task
before accepting the model’s answer, requiring users to briefly re-state
its logic in simple language. Prior HCI work shows that this lowers over-
confidence and directly targets the illusion of understanding (Fisher &
Oppenheimer, 2021). Future work should systematically vary prompt
frequency to test whether deeper interaction with Al improves users’
ability to discriminate correct from incorrect responses. Furthermore,
interface designers should calibrate assistance to those empirical vari-
ations, e.g., surface real-time accuracy feedback once overestimation
exceeds four points, progressively adjusting assistance level through
real-time sensing of metacognitive states (e.g., user agency) and adapt-
ing interfaces to cognitive states (Chiossi et al., 2023; Villa et al., 2024).
Such mechanisms could be crucial for optimizing HAI

Methodologically, our study introduces a new approach to analyz-
ing biased decision-making in repeated Al interactions. Using com-
putational methods, researchers can distinguish general biases from
those emerging in post-decision processes (e.g., increased metacogni-
tive noise), allowing for a more precise analysis of bias development in
HAL

7. Conclusion

We found that participants using an LLM had improved logical
reasoning performance as compared to no Al but that cognitive per-
formance gains did not scaffold metacognition. With Al use, the DKE
was eliminated. Based on these findings, we suggest developing new in-
terfaces for interactive Al that are designed to enhance metacognition,
allowing users to monitor their performance more accurately.
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Table A.1
Correlation table of metacognitive measures in study 2 for the no-Al group.
AEP Estimate Performance Aconf pconf AUC
AEP
Estimate
Performance 0.25%**
Aconf -0.15 0.11
uconf 0.60 0.20%* —0.18**
AUC -0.13 0.01 0.57%** —0.24""*

Note. d f =205, AEP represents the difference between performance and estimated performance (metacognitive accuracy). Performance refers to
the achieved task performance. Aconf is the difference between predicted and actual confidence, while uconf is the mean confidence (average
confidence ratings). AUC refers to Area Under the Curve, with a higher AUC value indicating a more reliable confidence score in reflecting

participants’ correctness.
* p<.05.

* p<.0l.
*Ep <001,
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