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Figure 1: We present HappyRouting, a new navigation system that routes after positive emotions. The two fast and happy
routes are exemplary and exhibit different environmental characteristics that can influence a driver’s emotions. We predict
emotional weights for every road coordinate based on environmental, personal, and dynamic road context and find the optimal
driving trajectory.

Abstract
Routes represent an integral part of triggering emotions in drivers.
Navigation systems allow users to choose a navigation strategy,
such as the fastest or shortest route. However, they do not con-
sider the driver’s emotional well-being. We present HappyRouting,
a novel navigation-based empathic car interface guiding drivers
through real-world traffic while evoking positive emotions. We
propose design considerations, derive a technical architecture, and
implement a routing optimization framework. Our contribution is
a machine learning-based generated emotion map layer, predicting
emotions along routes based on static and dynamic contextual data.
We evaluated HappyRouting in a real-world driving study (N=13),
finding that happy routes increase subjectively perceived valence
by 11% (p=.007). Although happy routes take 1.25 times longer on

average, participants perceived the happy route as shorter, pre-
senting an emotion-enhanced alternative to today’s fastest routing
mechanisms. We discuss how emotion-based routing can be inte-
grated into navigation apps, promoting emotional well-being for
mobility use.

CCS Concepts
• Human-centered computing→ Interactive systems and tools;
HCI theory, concepts and models; • Computing methodologies →
Machine learning.

Keywords
Empathic Interfaces, Affective Computing, Navigation, Machine
Learning, Contextual-Aware Computing
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1 Introduction
Today’s car navigation systems allow users to navigate accord-
ing to various objectives, such as the fastest route, the shortest
distance [32], or routes that require the lowest energy consump-
tion [77]. In contrast to these routing modalities, we investigate
a new objective by optimizing routes for positive emotions. Emo-
tions play an important role in driving [33], as certain positive or
negative arousal and valence states can lead to more thoughtful
decisions in the driving process, leading to safer driving. In con-
trast, exaggerated states such as anger can significantly increase
the driver’s willingness to take risks and thus endanger the safety
of all road users [23, 57]. Those exaggerated states lead to more
traffic accidents [73]. Subsequently, we propose HappyRouting, a
system that navigates drivers through routes that elicit positive
(i.e., happy) emotions to improve the driving experience and safety.
HappyRouting refers to routing mechanisms that optimize for the
user’s emotional well-being alongside conventional objectives such
as travel time and distance.

While the vision, preferences, and design of empathic navigation
have been presented in prior work [58], its technical concept, im-
plementation, and concrete evaluation have rarely been the subject
of research. In particular, the field of in-vehicle emotion assess-
ment [9, 48] has evolved strongly over the past decade, while em-
pathic real-world applications remain the exception [12, 80]. Based
on an increasing number of available datasets that classify driver
emotions based on driving context [3, 9, 48], we conceptualize and
implement the missing building blocks for an end-to-end empathic
navigation interface. Consequently, HappyRouting predicts pos-
sible emotions for thousands of unseen roads throughout a road
graph and optimizes for the best tradeoff between positive emotions
and travel time. While prior work has proposed emotion-focused
navigation strategies based on static affective user ratings [38], our
system is the first to integrate real-time contextual data for emotion-
driven route adaptation. HappyRouting dynamically updates routes
based on predicted happiness levels using remotely acquirable data
sources without requiring subjective user reports after model train-
ing. Thus, our approach dynamically incorporates contextual road
features to predict emotions in real-time. This allows for personal-
ized navigation that adapts without requiring manual user input
during or after model training. The goal of HappyRouting is to en-
hance emotional well-being by counteracting stress and frustration,
known contributors to accident-prone behaviors [23, 57, 73].

Closest to our work is SAR by Wang et al. [75], a route recom-
mendation system that considers social and environmental context
factors affecting human emotions. The authors devised a heuristic
model incorporating context information to determine the most
enjoyable route. They evaluated their method based on computa-
tional performance and with five participants in a driving simulator.
To improve and extend this idea, HappyRouting incorporates a
machine learning model trained and quantitatively evaluated on
a large dataset. In contrast to a driving simulator, we conducted
a real-world user driving study to investigate how HappyRouting
affects emotions while driving.

This paper presents design considerations, the resulting archi-
tecture, and an experienceable implementation for driving with

positive emotions in real-world environments. We begin by dis-
covering design considerations for a scalable affective navigation
system applicable to unknown users, environments, and roads. We
demonstrate that theoretical psychological assumptions hold for
the experienceable system, showing for the first time a navigation
system that regulates emotions positively by the choice of an opti-
mized route. Based on this, we derive the technical architecture for
HappyRouting. An in-the-wild driving study with 13 participants
investigates the effect on arousal and valence between choosing
the fastest route and the predicted happier route. Our results show
a significant effect in perceived valence between the fast and happy
route, showing that the happy route selected by HappyRouting
improves valence. Furthermore, our participants were willing to
use HappyRouting although positive routes consumed more time.
Moreover, we conducted a simulation study in a whole region to
compare the differences between the optimization objectives. Fi-
nally, we conclude our work by discussing ethics, the applicability
of HappyRouting for other transport modalities, generalization for
unseen roads, limitations, and future work.

Contribution Statement
The contribution of this work is threefold:

(1) We present a set of comprehensive design considerations
for a scalable affective navigation system that applies to
previously unknown users and unseen environments.

(2) With HappyRouting, we demonstrate that guiding design
decisions hold for an experienceable end-to-end system and
show for the first time that navigation systems can regulate
emotions positively by the choice of routes in a real-world
setting.

(3) We characterize the qualitative and quantitative properties
of our proposed affective navigation system in an in-the-
wild user study (𝑁 = 13) and with detailed simulations.

2 Related Work
HappyRouting’s idea of routing after positive emotions build on
concepts found in driver emotion assessment, contextual comput-
ing, and empathic car interfaces.

2.1 Inferring Driver Emotions
Using context-aware sensing [68] using human sensing in cars [39]
gained increased attention to understanding driving behavior or
facilitating novel perceptual car interfaces. In this context, empathic
car interfaces benefit from understanding the driver’s emotions to
adapt their interface, contributing positively to the user’s emotional
state [71, 80]. Emotion assessment can be achieved through direct
and indirect user observation.

Direct observation methods, such as recognizing facial expres-
sions [24, 26], are a convenient method to infer emotions while
driving. Although facial expressions are a commonly used modal-
ity [14], it remains controversial in research [36, 52]. Alternatively,
emotions can be derived from psychophysiological signals such
as electrodermal activity, heart rate, muscle tension, respiratory
rate, and electroencephalography [3, 7, 70]. The setup of in-car
physiological sensing is often problematic due to insufficient signal
quality levels [22] and missing user acceptance [76].
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Table 1: Description of papers and their contribution to route recommendation after considering emotions. The dimension
Model Applicable to Unseen Environments refers to the fact that the developed model, either heuristic or as a classifier, does not
rely on crowd-sourced user data (e.g., POI ratings).

Paper Emotion Model Applicable to Routing Routing Routing Quantitative Routing Simulator Routing In-the-Wild
Classifier Unseen Environments Idea Algorithm Simulation Study User Study User Study

Bethge et al. [8, 9] ✔ ✔ ✖ ✖ ✖ ✖ ✖

Huang et al. [38] ✖ ✖ ✔ ✔ ✖ ✔ ✖

Liu et al. [48] ✔ ✔ ✔ ✖ ✖ ✖ ✖

Pfleging et al. [58] ✖ ✖ ✔ ✖ ✖ ✖ ✖

Wang et al. [75] ✖ ✔ ✔ ✔ ✖ ✔ ✖

HappyRouting (Ours) ✔ ✔ ✔ ✔ ✔ ✖ ✔

Indirect user observation through analyzing contextual driving
data gained increasing attention for emotion recognition. Zepf et
al. [78] surveyed affective automotive user interfaces and identified
several factors causing emotional triggers and changes, includ-
ing driving behavior, music, and road conditions. This fact was
exploited by Liu et al. by analyzing vehicle CAN-bus data [48],
reaching subject-independent F1-scores of 59%. Bethge et al. [9, 10]
showed that contextual driving data captured with a smartphone
resulted in subject-independent F1-scores of 56%, an improvement
over using facial expressions as a baseline. In contrast to previous
work [48], the authors utilized data from a smartphone only.

An empathic navigation system poses additional constraints on
the observation method since it is required to predict emotions on
thousands of possible road segments to find the optimal emotion-
aware route. Since, in most cases, there is no direct observation
input (e.g., crowd-sourced facial expressions) accessible for every
unseen road segment, algorithms trained on remotely accessible
observations (e.g., traffic, road properties, or weather) are needed.

2.2 Affective Routing
Routing is considered a factor that strongly influences the driver’s
emotions. In their detailed study, Braun et al. [12] explored 20 con-
cepts for empathic car interfaces, finding that empathic navigation
is desired among German and Chinese drivers. In a web survey,
Pfleging et al. [58] evaluated the general idea of experience-based
navigation and identified the fastest route and the route with the
least stress as the most important factors for route selection. At
the same time, users often bypass the fastest route, for example,
to avoid stressful situations and negative emotions [17]. Zepf et
al. [78] showed that most positive emotional triggers are associated
with the environment. Accordingly, positive and negative experi-
ences with a route play a crucial role for the acceptance of future
route recommendations [67]. Previous work focused on various
routing concepts that may indirectly influence emotion. This stands
in contrast to HappyRouting, which directly optimizes for positive
emotions by applying a diverse set of features.

Quercia et al. [61] investigated a scenic routing concept using
crowd-sourced images associated with POIs. Similarly, Runge et
al. [65] identified scenic rides by applying a pre-trained neural
network to street view imagery. The routing methodologies [61, 65]
incorporate contextual routing concepts but are limited by crowd-
sourced data and the visual attributes of the place itself. Wang et
al. [75] presented a route recommendation system that optimises

routes based on their social and emotional impact. The authors
presented a heuristic model that determines a route based on factors
such as traffic and historical emotions of a previously driven route.
The authors found that 4 out of 5 participants who participated
in a simulator driving study preferred the route suggested by the
algorithm to a randomly assigned route.

Huang et al. [38] presented a mobile application that uses an
affect-space-model for collecting emotional responses - the basis
for a route planning algorithm. A user study revealed that the
generated routes are preferred over conventional shortest routes
used in navigation systems.

Using physiological data, Tavakoli et al. [72] introduced a frame-
work for routing recommendations based on the driver’s heart rate
collected in a three-month in-the-wild study. The authors note
that the proposed framework can find infrastructural elements in a
route that can potentially affect a driver’s well-being. Hernandez
et al. [37] proposed the long-term vision of crowd-sourced driver
stress detection [54] using “Empathetic GPS” - a vision of a naviga-
tion system that geographically identifies routes which minimize
driver stress.

2.3 Summary
Previous works show that empathic navigation is a highly desired
feature among drivers and co-drivers [12, 58] (see Table 1 for a sum-
mary). Our work leverages such initial concepts and contributes
with the technical building blocks to ultimately present HappyRout-
ing, a real-world, end-to-end affective navigation system. To our
knowledge, HappyRouting is the first experienceable system that
predicts emotions for real-time routing in-the-wild.

3 Design Considerations
The following section describes our design considerations for Hap-
pyRouting. We start by describing how HappyRouting will affect
the driver’s emotions, mood, and well-being. Then, we look into
different routing concepts and conclude with relevant objectives
and the modeling of driver routes. A particular focus on ethics and
limitations can be found in our discussion in Section 7.

3.1 User Emotions, Mood &Wellbeing
Our goal was to create a joyful driving experience that is implicitly
composed of contextual data such as traffic, road characteristics, and
weather. In general, our approach can be considered a method for
regulating emotions [50] during navigation, particularly aiming for
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an upregulation. Emotions can be regarded as situationally bound,
limited in time, with either a positive or a negative state [50]. Hence,
emotions can change throughout a ride. For example, the traffic
flow or route characteristics, which are among the primary sources
of information for HappyRouting, can manipulate perceived driver
emotions.

In contrast to emotions, the user’s mood is less intense and spe-
cific and often not caused by a particular event or situation [29],
such as the current weather [44]. HappyRouting primarily aims
to elicit positive emotions, eventually positively influencing the
user’s mood. However, this approach is deliberately oversimplified
as it is necessary to consider the overall process of mood adjust-
ment and counter-hedonistic effects [45]. This means that positive
mood is not only established by a simple aggregation of positive
emotions but rather a complex interplay of positive and negative
emotions (e.g., people like to listen to sad music to adjust their
mood positively) [53].

Another constraint of our approach is focusing on primary emo-
tions, particularly positive affect. However, positive affect and the
absence of negative affect represent only a subset of possible di-
mensions to improve subjective well-being [30]. Other important
factors, particularly in the dimensions of social well-being and
eudaimonic well-being (e.g., self-acceptance), are currently well
outside our scope of work. In summary, HappyRouting can be seen
as a first important step towards a more detailed understanding
of how technical systems can positively impact emotions. On the
other hand, the aforementioned limitations raise many important
questions for future work.

3.2 Routing Concepts
All routing concepts have in common that they operate on a graph
of nodes and edges with associated weights. Edges represent a road
segment in the road network, while nodes connect the various
road segments. The weights associated with a road segment can
represent different optimization objectives, for example, routes
with the fine particulate (PM2.5) intake [49] or those requiring the
least energy [77]. For most use cases, the primary optimization
objective is tightly coupled with travel time and distance between
the two nodes. Eventually, this fact leads to the need for multi-
objective optimizations, achievable through single- and multi-stage
optimization.

Single-stage optimization combines multiple optimization ob-
jectives into one optimization method. For this purpose, multiple
weights corresponding to the different objectives are associated
with each edge, sometimes called layers. In the simplest case, the
final weight can be determined by weighted addition of the indi-
vidual weights [74] or introducing a penalty factor [42]. If multiple
objectives have statistical dependencies, more complex models like
Bayesian Belief Networks can determine the combined weight [69].

Multi-Stage Optimization conducts multiple optimizations in suc-
ceeding steps, with the first steps representing the most important
optimization objectives. This optimization procedure can be used
if the optimization problem is expressed through multiple models,
e.g., road graphs and lists of POIs. For example, Quercia et al. [61]
apply Eppstein’s algorithm [27] to find the 𝑁 shortest paths, and
then, in a second stage, rank those paths by user scores for POIs. A

modified approach for the 𝑁 shortest paths problem was presented
in SAR [75].

For HappyRouting, we apply single-stage optimization, as we
can associate emotions to each road segment, enabling us to express
the problem in a uniform way. HappyRouting’s primary objective
is travel time, while emotions are added to the graph’s weights as a
penalty term [42]. The penalty term is computed through amachine-
learning model, which considers various emotion-related features.
Routes can be computed with efficient graph-based algorithms like
Dijkstra or A*, or in our case, the contraction hierarchies algorithm
specifically designed for vehicle navigation optimization [31].

3.3 Optimization Objectives
Considering humanwayfinding, Golledge [32] ranked various route
selection criteria. Shortest distance ranked first and least time second,
followed by fewest turns and most scenic. Less generic approaches
consider criteria like least energy [77], least fine particulate (PM2.5)
intake [49], optimal physical exercise [69], or personalized acces-
sibility metrics [43, 74]. We can categorize these criteria into the
following optimization objectives:

• Environment-dependent objectives, e.g., shortest distance do
not change over the duration of the trip. In HappyRouting,
we utilize properties of the environment like the number
of lanes and speed limits to derive emotions.

• Time-dependent objectives change over the duration of the
trip, such as least time would be affected by time-dependent
traffic. Our primary optimization objective in HappyRout-
ing is the travel time, which is penalized by negative or
neutral emotions.

• User-dependent objectives depend on personal criteria, such
as accessibility needs. HappyRouting attempts to scale across
various users, including unknown ones. Therefore, we in-
clude some user-dependent features, i.e., personal context
as input in our architecture but identify a need for further
exploration in future work.

• State-dependent objectives consider the state of an object,
such as an electric vehicle’s charging state [77]. We do not
consider this in our objectives for practical reasons and
generalization purposes.

Different optimization objectives raise the question of their soci-
etal impact, particularly when applied at a large scale. Johnson et
al. [41] discuss the potentially negative influence of scenic routing
algorithms and their optimization objectives on neighborhoods
and parks, such as increased traffic presence in otherwise quiet
residential areas. Besides this, emotion-based navigation can also
have an environmental impact, e.g., if routes are longer. We refer to
Section 7 for a more detailed discussion, including the implications
of automated driving systems.

3.4 Modeling and Simulation
Most sophisticated optimization objectives require an approach to
express their influence on the weights of a graph.

The most common form is modeling based on historical observa-
tions, especially of travel times [59] or least fine particulate (PM2.5)
intake [49]. However, the two examples differ greatly in how they
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Figure 2: Architecture of happy navigation computation.

can be applied to a graph network. Regarding travel times, ob-
servations can directly be linked to edges in the graph. For fine
particulate (PM2.5), an intermediate interpolation and edge asso-
ciation step is needed, as observations are linked to measurement
stations [49]. HappyRouting applies both methods for different
features: On the one hand, the characteristics of the road segments
are used as direct parameters, and on the other hand, metrics of the
surrounding landscape, such as the green index, are interpolated.

Models that take travel time into account require time-dependent
modeling, as traffic and, therefore, weights in the graph change over
the duration of the trip. Such look-ahead models are often based
on historical observations. Except for travel time, HappyRouting
currently does not consider additional fast-changing environmen-
tal parameters. In particular, the weather will be considered static
throughout the trip. This design choice reflects a lowered computa-
tional effort at the cost of potentially less accurate predictions in
the future.

The penalty term for each road segment can be represented as
a regression model in many use cases like travel time prediction
[59]. In contrast, HappyRouting is based on a multi-class model
for predicting emotions (e.g., happy, neutral, sad), where the inputs
consist of road parameters and the outputs represent the pseudo-
likelihood of each class. To synthesize the penalty term for the
graph edges, we used only the pseudo-likelihood of the class happy.
Alternative methods represent the model as a binary classifier (e.g.,
happy against all other classes) at the cost of decreased performance
due to an increased imbalance of classes.

4 Architecture
In the following section, we describe the architecture of our sys-
tem and the necessary steps to provide the user with an emotion-
optimized route. We derive the technical considerations from the
concept design considerations presented in Section 3.

4.1 Requirements
Finding an emotionally-relevant route is complex due to several
reasons. The route optimization must be executed in near real-
time, and all information required for the routing algorithm must
be available (see Section 3). Given a user’s starting point 𝑎 and
selected destination 𝑏 as GPS coordinates, we search for a route
that likely makes the user happy. The following requirements must
be fulfilled by HappyRouting:

Req 1: The emotional component of the route is subject to context,
person, and traffic characteristics

Req 2: The happiness weight of road segments has to be assigned
before starting the navigation

Req 3: The system should be usable like a common smartphone
navigation system
(a) The system should enable destination search function-

ality (e.g., finding a train station)
(b) The system should re-locate given the smartphone’s

geolocation and show the trajectory of the happy route
(c) The system should output turn-by-turn navigation

instructions to the driver in real-time
Req 4: The navigation engine should be designed as a scalable

system
(a) Provide happy routes in every geolocation (no pre-

annotated or historic routes)
(b) Optimize the route trajectories without delay so that

the user receives the route recommendation < 2𝑠 after
entering the destination

4.2 General Framework
Figure 2 provides an overview of the system architecture. Depend-
ing on the start to end point, a roadside map is created via Open-
StreetMap (OSM)1. We then perform a custom map layer computa-
tion in the subsequent step in which we predict emotional weights
for every edge in the road graph. The happy route is then found
with the newly created map via an optimization procedure. We
expose the endpoint of the navigation engine and build a real-time
navigation smartphone app on the basis of the routing engine.

4.3 Input Features
We used a reduced number of contextual road features of the orig-
inal dataset [9] for our custom context-emotion classifier model.
The selected features were based on Braun et al. work [15] where
driving behavior, traffic, vehicle performance, and environmental
factors were found to be discriminative of emotions. We filtered
the variables based on the following requirements: (1) real-time,
on-device computation without accessing the vehicle itself, (2) no
direct user interaction, (3) non-critical consumption of device re-
sources, and (4) time-critical computability. We restricted the model

1https://www.openstreetmap.org

https://www.openstreetmap.org
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Table 2: List of available features to predict drivers’ emotions.

Context Feature Example Description Source
weather feeltemp_outside 13.0 temperature outside of car Azure Weather

windspeed 5.6 windspeed in km/h
cloud_coverage 76 relative cloud coverage in %
weather_term ‘clear’ description of weather condition

traffic reducedspeed 7.295495 current reduced speed to freeflow speed Azure Traffic
freeflow_speed 115.0 freeflow speed expected under ideal conditions

road road_type ‘residential’ road type of current position OpenStreetMap
max_speed 120.0 maximum allowed speed on the road
n_lanes 2 number of available lanes

greeness satellite_greeness 0.2 percentage of green pixels in the environment Mapbox Satellite
time daytime ‘afternoon’ current daytime system input
personal age 21 age of the driver user input

before_emotion ‘happiness’ subjective expressed emotion before driving

to only those input features that can be pre-computed before driv-
ing (Req 2)2. Furthermore, personal factors such as age were used
to adapt to user-dependent emotion-route preferences. The selected
features are shown in Table 2. We computed the weather and traffic
features for every road segment using Microsoft Azure’s Weather
and Maps API. Although the weather often stays similar across
a larger geographical area, we included weather in the emotion
prediction as the weather condition affects the route choice of our
algorithm. For example, in rain, users may favor broad streets, while
sunny conditions may prompt a preference for curvy, narrow roads.
Thus, the emotion classifier learns this input interdependence. The
feel temperature was provided directly by the Azure Weather API
and comprises the levels of humidity, light, wind speed and real
temperature. The road type features were gathered from OSM by
selecting the nearest OSM node with its corresponding parameters.
Based on satellite imagery, we quantified the vegetation and deter-
mine the green index [18] at any given geolocation. To obtain the
greenness, we computed the relative amount of pixels associated
with vegetation in each given satellite image. We computed the
curviness using a weighted measure of the length of curves, which
depends on the radius of a circumscribed circle that passes through
all three consecutive geocoordinates in a route. Given 𝑎, 𝑏, 𝑐 as the
length of the three sides of a triangle, the radius of the circumcircle
is given by the formula:

𝑟 =
𝑎𝑏𝑐√︁

(𝑎 + 𝑏 + 𝑐) (𝑏 + 𝑐 − 𝑎) (𝑐 + 𝑎 − 𝑏) (𝑎 + 𝑏 − 𝑐)
(1)

4.4 Emotion Prediction
The foundation for our emotional routing is a computational behav-
ior model for predicting emotions using road context. We thereby
learn subject-independent emotion labels for previously unseen
road segments (Req 4). Recently, Bethge et al. [9] proposed an in-car
remote-sensing system able to predict emotions on unknown roads
for unknown users with very high confidence. The model is able to
predict discrete emotion categories (‘happy’, ‘sad’, ‘neutral’, ‘angry’,
‘contempt’, ‘disgust’, ‘fear’, ‘surprise’) using contextual road infor-
mation (Req 1). Although many affective representation models

2Contextual variables such as the current acceleration cannot be pre-computed.

exist (e.g., Plutchik’s wheel of emotions describing 56 emotions [60]
or Russel’s circumplex model [66]), we selected the seven emotion
categories, as well as the category neutral. Our model is designed
to predict multiple emotions to ensure adaptability for navigation
use-cases where other emotions predictions are needed, rather than
simplifying it to a binary classification setting for just predicting
‘happiness’. For example, future research could use our classification
model to build a navigation framework that avoids ’sad’ emotional
states for people with an anxiety disorder or emotional sensitivity 3.
The choice of our set of discrete emotions is practically grounded in
Ekman’s theorywhich is often associatedwith emotion detection by
analyzing facial features. We exploit this well-known model for our
optimization and build a bridge to previous work [20, 80]. In their
in-the-wild driving study, the authors collected contextual driving
data and subjective emotional states expressed by drivers while
driving [9]. To not distract the driver and bias the ground-truth
labeling, a beep tone every 60 seconds was triggered for the driver
to verbally express their emotion according to a predefined set. We
acquired the dataset and extended it by another 14 participants to 26
participants in total, reflecting in 31 sessions consisting of 438 min
of emotion-labeled driving and eight classes of emotions in total4.
The dataset used in our study exhibits imbalanced labels due to the
infrequent occurrence of negative emotional states in naturalistic
driving environments. Specifically, our dataset includes approxi-
mately 120 minutes of driving data labeled with ’happy’ emotional
states. We describe detailed information about the classifier dataset
and the labeling procedure in the Section A. After defining the
input features, we selected a Random Forest Ensemble Learning
as classifier based on a 10-fold grid-search cross-validation (using
Support Vector Machines, Feedforward Neural Network, Decision
Tree, Adaboost, and Random Forest classifier from scikit-learn with
hyperparameter optimized parameters) in which the Random Forest
achieved the highest average F1 score. Furthermore, our Random
Forest model is easily deployable on-device, making it an ideal

3We note that ’happiness’ and ’sadness’ are not antagonistic emotional states.
4We note that the sole purpose of the training-dataset is to learn an emotion prediction
engine that links contextual properties and emotion labels. Thus, this dataset differs
from the in-the-wild experiment evaluation of HappyRouting.
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Table 3: Mean (standard deviation) accuracy, class-weighted precision, recall, and 𝐹1 scores of the cross-validation on unseen
participants, i.e., leave-one-participant-out cross-validation. Themodel predicts eight emotion classes in total (left) or happiness
vs. non-happiness emotions (right). We applied a FERPlus-trained classifier [5] to the dataset, confirming findings in [9].

Leave-One-Participant-
Out Cross-Validation (all

emotion classes)

Leave-One-Participant-
Out Cross-Validation
(happiness only)

Input Accuracy Precision Recall 𝐹1 Accuracy Precision Recall 𝐹1

Facial Expr.
(FERPlus [5]) .55 ± .18 .53 ± .19 .55 ± .18 .49 ± .19 .20 ± .15 .20 ± .34 .09 ± .42 .12 ± .38

Our model .63 ± .16 .49 ± .21 .63 ± .16 .53 ± .20 .65 ± .14 .22 ± .20 .75 ± .42 .66 ± .10

choice for the real-time processing and low latency navigation ap-
plication, without requiring specialized hardware on-device, unlike
deep neural network architectures. The prediction model 5 is tested
via a leave-one-subject-out cross-validation on unseen participants.
Within one cross-validation fold a Random Forest model is trained
on 25 participants and the performance is tested on the left-out
participant’s emotional data. Thereby, we prevent overfitting on
individual participants’ emotional data and assess how well the
model generalizes, i.e., in predicting the emotions of unseen par-
ticipants. This evaluation allowed us to gauge the accuracy of a
correct emotion prediction for a user that has yet to use the nav-
igation system. The results are outlined in Table 3. Overall, our
model achieves a mean emotion recognition accuracy of 63% with
a balanced 𝐹1 score of 53%6. These results are slightly inferior to
current subject-independent contextual emotion classifiers [9, 48],
but are also based on a remotely acquirable, and thus much reduced,
feature set. As a baseline in our dataset, we recorded a driver-facing
camera stream and applied a FERPlus-trained classifier [5], show-
ing that the collected contextual features still outperform facial
expressions [9]. We also report the performance of a binary classi-
fication (happiness vs. non-happiness label prediction). Here, the
results of our binary classification model are superior to the fa-
cial expression engine. Our model achieves a mean result with an
accuracy of 65% and a 𝐹1 score of 0.66 vs. the facial expression
engine with an accuracy of 20% and a 𝐹1 score of 0.12. The results
of the facial expression engine are vastly inferior as happy emotions
are nuanced facial expressions that are hard to detect with a non-
participant-trained computer vision model. Therefore, we argue
that successful prediction of happiness on the road may require
a more nuanced and multidimensional approach that considers
a range of subjective and objective factors, including individual
differences, social context, and environmental factors (as we do in
our model). While the F1 score may seem not optimal, it’s essen-
tial to consider that classification takes place over numerous road
segments, ranging from hundreds to thousands, on a given route.
Despite performance fluctuations for specific segments, the overall
results will generally even out when applied to many instances.
Our metrics align with findings in prior works, particularly when
evaluated in a generalizable leave-one-subject-out setting, such as
ours [9, 48].

5Model parameter: class_weight = ’balanced’, max_features= 𝑙𝑜𝑔2 , n_estimators= 50.
6Neutral emotions represent the majority class of our dataset, while happy emotions
are at 23%, being predicted second best (after neutral) in terms of precision and recall

Figure 3: Graph Building for Happy Route Optimization. The
navigation finds the optimal emotional path according to
the emotion-road-weight regularization (Equation 2). The
bottom layer is a satellite image. The layer above represents
the routable roads. Above is an emotion heatmap based on
interpolation of the computed happiness points. The red
path is the fastest path offered by navigation, while the blue
path is the happy path.

4.5 Routing Map and Navigation
Having defined the predictive model required to simulate emotions
based on contextual information collected remotely, we now present
the system required to provide users with a route optimized for
emotions. In Figure 3, we display how a happy path may differ from
the fastest one based on a custom emotion map layer.

Routing Map Generation. We defined a custom emotion map
layer that contains predicted emotions and optimizes the route
thereafter. Given a road graph𝐺 with vertices 𝑉 and edges 𝐸, we
predicted emotion weights for every driveable segment 𝐸. We then
applied the contraction hierarchies algorithm [31] to the road graph
by optimizing for the following equation with the user’s start point
𝑎 and endpoint 𝑏:

𝑟𝑜𝑢𝑡𝑒 (𝑎, 𝑏) =𝑚𝑖𝑛
∑︁

𝑖, 𝑗∈[𝑎,𝑏 ];𝑖≠𝑗∈𝐸

𝑑 (𝑖, 𝑗)
𝜆 ∗ 𝑒 (𝑖, 𝑗) ∗ 𝑐 (𝑒 (𝑖, 𝑗)) (2)
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Figure 4: GraphHopper web-server for Happy Route Optimization in a
2D-layout.

Figure 5: Implemented navigation app that sup-
ports normal and happy routing. The app is placed
on the windshield and has the same functionality
as normal navigation apps (turn-by-turn naviga-
tion, voice output for hinting next directions).

In contrast to the fastest route, our optimizer minimizes the sum
of the travel time of each edge 𝑑 (𝑖, 𝑗) and penalizes its decision by
the happiness weighing factor 𝜆 and its corresponding predicted
happiness value 𝑒 (𝑖, 𝑗), multiplied by the confidence of the individ-
ual happiness prediction 𝑐 (𝑒 (𝑖, 𝑗)). Here, the last part ensures that
it is favorable for the optimizer to choose edges with high predicted
happiness values7. In our simulation study (see Section 6), we found
that happiness weighing factor of 𝜆 = 20 yields a good tradeoff
between travel time and positive emotions.

Optimization Backend. To implement the optimization procedure,
we used the open-source, Java-based framework GraphHopper8.
GrapHopper offers a fast and memory-efficient routing engine, in-
cluding a web frontend and a standalone web server to calculate
a route’s distance, time, turn-by-turn instructions, and trajectory
properties. We adopted the routing optimization according to Equa-
tion 2. We did not employ a standard A* algorithm [34] for optimal
route finding due to performance reasons. Instead, we disabled
all initial edge weight calculations for happy routing and built a
prominently-used CH (Contraction Hierarchy) graph [31] with pre-
calculated happiness weights to speed-up optimization (Req 4).
We exposed a happy and fastest routing computation endpoint.
The interactive GrapHopper routing endpoint for a happy route
computation is shown in Figure 4.

Smartphone Navigation App. We implemented a scalable mobile
application to provide users with the ability to navigate. Therefore,
we customized the Android application PocketMaps9 to use our
optimization engine (Req 3). Our mobile application tracks the
current smartphone geolocation using GPS and is able to search for
7We opt the routing decision formula to be influenced by the predicted emotion value
in the denominator as the travel times have no equal lengths and regularizing longer
route segments (high 𝑑 (𝑖, 𝑗 )) with the emotion scaling is more beneficial than, e.g.,
subtracting the emotion values.
8https://github.com/graphhopper/graphhopper
9https://github.com/junjunguo/PocketMaps

destinations on the map via Google Maps search. The application
then performs map matching of the current geocoordinate to the
road segment and outputs turn-by-turn navigation instructions (via
text and voice). Users can choose between the fastest and happiest
routing in our app. Figure 5 shows the navigation screen of our
customized PocketMaps application in the wild.

5 Driving Study
The goal of our driving study is to gain an understanding of Happy-
Routing’s user experience and its influence on a driver’s emotions.
We conducted a within-subject driving study to investigate differ-
ences in valence and arousal when using the fastest route compared
to HappyRouting.

5.1 Participants
Participants were recruited through a dedicated mailing list of col-
leagues willing to conduct research studies. Participants did not
receive compensation for their involvement in the study. Partic-
ipants gave their explicit consent to participate in the study and
formally agreed by signing an informed consent form, which ex-
plained the details of the study and their rights. Participants were
informed about the goals and procedure of the study. Participants
could retract the study at any time. An independent review board
granted ethical approval for the study, ensuring compliance with
established ethical standards and protocols. We recruited 13 par-
ticipants (11 self-identified as male, two self-identified as female)
with an average age of 27 ± (8.51) years. Six participants drive
occasionally (i.e., less than 10,000 km/year), six participants drive
moderate distances (i.e., between 10,000 and 20,000 km/year), and
one participant is a frequent driver (>20,000 km/year).

https://github.com/graphhopper/graphhopper
https://github.com/junjunguo/PocketMaps
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Figure 6: Experimental design of the emotional navigation driving study. The endpoint of the second drive was set to be the
start point of the first drive.

5.2 Methodology & Procedure
The participants accessed a vehicle with a standard Android smart-
phone attached to the windscreen (see Figure 5). We gave the par-
ticipants time to get familiar with the car and explained that they
could drive like they normally do (e.g., listening to music). We
asked the participant to use our HappyRouting application just
like a common mobile navigation app. We selected start and end
points that are approximately 15 minutes apart in terms of driving
time, encompassing both rural and urban regions. This decision
was influenced by the mean duration of journeys across the globe
is approximately 15 minutes, although this value may fluctuate
greatly depending on the country and other aspects [55]. Consider-
ing that commuting accounts for most trips [28, 62], we opted for
an urban office location and a rural area as the two points in our
real-world driving study.

The calculated routes were kept consistent for all participants to
ensure comparability. The routing choice (fastest or happy routing)
was hidden in the mobile application to avoid confirmation bias
(i.e., blind route choice). The routing choice was randomized so that
seven participants drove the happy route first, while six drivers
were assigned to the fastest route first. While the start and end
points were the controlled variables in the trips, it is important
to note that factors such as the time of day, the specific vehicle
used, and resulting traffic conditions were not regulated within the
study parameters. These deliberate choices were made to maintain
the study’s closeness to real-world driving scenarios, intentionally
varying only the two route options while allowing other factors
like time of day, the specific vehicle used, and traffic conditions to
simulate natural, uncontrolled driving conditions.

Overall, the one-way driving lasted approximately twelve min-
utes for the fastest route and 14 minutes for the happy route, de-
pending on individual traffic conditions. Unlike the routes shown
in Figure 1, the routes had very little overlap, with varying pro-
portions of highways and secondary and tertiary roads. The study
protocol is presented in Figure 6. For each assessment of the driver’s
emotional state (valence, arousal), we applied the self-assessment
manikin (SAM) framework [11] with a five-point Likert scale. More
detailed questions, such as the participant’s driving experience, trip-
time estimate, or route favorability, were asked after the drive and
can be found in Table 4.

5.3 Results
Valence-Arousal-Dominance Analysis. We present the before and

after analysis of valence, arousal, and dominance scores assessed
with the self-assessment manikin questionnaire in Figure 7. We
found that people gave higher valence ratings, i.e., positive atti-
tudes, after taking the happy route. The mean valence score for

happy routing before driving was 4.15 and increased to 4.62 after
driving (11% valence score increase). We statistically compared the
driver emotions before and after driving to assess the impact of
HappyRouting on driver emotions compared to fastest routing. We
used a Shapiro-Wilk test for investigating deviations for normality.
Applying a Shapiro-Wilk test revealed a non-normal distribution
for our measurements, 𝑝 < .001.

We used Wilcoxon signed-rank tests for statistically comparing
the emotion assessments within the routes. We calculate the effect
size 𝑟 as suggested by Rosenthal et al. [64] . A Wilcoxon signed
rank test found a significant difference in valence before and after
navigating through a happy route, 𝑍 = −2.45, 𝑝 = .007 , 𝑟 = 0.48
. In addition, we did not find significant before-after differences
in valence, 𝑍 = −0.83, 𝑝 = .405, 𝑟 = .23, or arousal, 𝑍 = −0.97,
𝑝 = .334, 𝑟 = .27, when driving the fastest route. Overall, we found
a positive trend in arousal when driving the happy route, though
all expressed arousal levels have high variance. The high variance
likely results from the fact that the driving task was perceived
as relaxing or exciting on an individual driver’s basis. Again, a
Shapiro-Wilk test showed a non-normal distribution for arousal,
𝑝 = .025. There was no significant difference in arousal before
and after driving the happy route according to a Wilcoxon signed
rank test, 𝑍 = −1.65, 𝑝 = .1, 𝑟 = .46 . This finding contrasts many
empathic car applications that seek to optimize arousal levels for
safety reasons [12, 13]. We did not find significant before-after
differences for the dominance scores when driving the fastest, 𝑍 =

−0.63, 𝑝 = .527, 𝑟 = .17, and happy route, 𝑍 = −1.41, 𝑝 = .157,
𝑟 = .39.

We statistically compare the perceived emotions for the fastest
and happiest route after the driving trials. However, a Wilcoxon
signed-rank test did not reveal a significant difference for valence,
𝑍 = −1.89, 𝑝 = .057, 𝑟 = .52, arousal, 𝑍 = −1.81, 𝑝 = .07, 𝑟 = .5,
and dominance, 𝑍 = −1.00, 𝑝 = .317, 𝑟 = .27. Route order had no
statistical impact on participant ratings. In total, 54% began with
the happy route, showing a balanced setup.

Happy Navigation Driving Behavior. Our driving questionnaire
showed high variability when and how drivers wanted to use happy
navigation functionality. After the driving experiment, we asked
the participants how much time they would sacrifice for a happy
route, assuming 20minutes for the fastest route. 9 of 13 participants
answered with 3 to 5 minutes, while 3 of 13 drivers would only
spend 1 to 3 minutes additional drive time. One participant stated
the willingness to even spend more than 10 minutes of additional
time to drive the happy route. These results are consistent with the
web survey by Pfleging et al. [58], which states that participants
would take on average 20.9%more time for an experience-optimized
route compared to the fastest route. While the fastest route took
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Figure 7: Before and after driving analysis of valence (left), arousal (middle), and dominance (right) questionnaire answers of
the driving study. The lines indicate the responses’ standard deviation (vertical) where the means are connected via the dashed
line. The asterisk indicates significance. Fast and happy routes were assigned blindly and by random succession.

on average 2 minutes less time, 8 of 13 participants perceived the
happy route as shorter. Combined with the finding that subjects
had a more positive emotional state after driving the happiness
route, we conclude that a happiness route may positively influence
the perceived travel time. Furthermore, in our study, 11 out of 13
participants stated that they would use the app in their leisure
time when they did not have time pressure. Interestingly, many
participants responded to use our navigation only on the weekend
(P9, P10, P12), preferably in the summer (P1, P2, P3, P4, P9, P10,
P12), and not at night when the driving scenery is not visible (P8,
P13). P2 mentioned a preference for using happy routes in the event
of a traffic jam, which would enable the choice of less crowded,
more relaxed, and undiscovered routes.

System Acceptance. In response to the question "How likely
would you be to use this system?" on a scale of 1 (not at all likely)
to 5 (very likely), 11 of 13 participants gave scores of 4 and 5. The
study participants introduced ideas for pairing happy navigation
with other in-car technology. The most prominent response was
that many people associate happiness with music while driving.
Therefore, many suggestions were made to automatically select the
music to match the route, or vice versa, to select the route to match
the music better.

We also asked the participants in a free-response question: "Do
you think there are any societal and ethical implications of this nav-
igation functionality? And if yes, which one?". Many participants
said that they did not see any ethical or societal implications (P6,
P7, P9, P11, P13). Participants also responded with higher energy
consumption costs and a more environmentally harmful behavior
when driving a happy route (P1, P3, P10). P10 stated that there was
a problem with happy routing only recommending pleasant routes
so that other less happy predicted locations are not seen, creating
a self-reinforcing effect of what people see.

6 Simulation Study
To offer a broad assessment of the recommended happy routes by
our system, we performed an offline numerical simulation analysis.

6.1 Experiment Design
First, we downloaded and computed the emotion prediction layer
for a map of a medium-sized city (12 × 12 km). We sampled a
large number of equally-distributed, random start and end points
(𝑁 = 1000) and searched for the happy and fastest routes. We
then analyzed the route trajectories segments by computing several
characteristics such as road types, greenness, traffic conditions, and
curviness. Furthermore, we computed the travel time, distance, and
the overlap of the fastest and happy routes.

6.2 Route Time Analysis
We anticipated that taking the happy route would increase the
travel time. Figure 8 shows the relationship of the navigation mode
on travel times using 𝜆 = 20. Using linear regression, we found that
a one-minute increase in fastest routing requires in average 1.26
minutes (75.6 sec.) more time to drive using happy routing. Only
9% of the start-end coordinates resulted in a situation where the
happy route is identical to the fastest route (𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 100%). The
time difference can be substantial in individual cases. Therefore,
we stress a transparent time forecast when recommending happy
routes to drivers. We conclude that the factor 𝜆 should rather be
regarded as an internal technical parameter (see the influence of 𝜆
in Figure 9) instead of a user-adjustable parameter. Higher 𝜆 results
in increased average travel time and, therefore, causes longer travel
times. Hence, 𝜆 can be adjusted dynamically to suit the societal
driving context.

6.3 Road Characteristics
We analyzed the recommended happy and fastest route for their
road types with results shown in Figure 10 and Figure 11. As the
drive-time was normalized per individual route, the values of the
bars do not add up to 100%. We tested whether the distribution of
the different road characteristics is significantly different (𝑝 < .01)
using a non-parametric Mann-Whitney U test. Compared to the
fastest route, we found that happy routes consist of more road
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Figure 8: Scatter plot of drive duration of normal vs. happy
routing. The points are mostly on the top-left of the equal-
travel-time line, meaning happy routing generally takes
longer to drive.We set 𝜆 to 20. The fitted regression (𝑅2 = 0.81,
𝐵𝐼𝐶 = 1969) with a slope of 𝛽1 = 1.26 (𝑝 = .00) means that a
1-minute increase in normal routing will take 1.26 minutes
(75.6 𝑠𝑒𝑐.) more time to drive using happy routing.
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Figure 9: Influence of emotional weighing factor 𝜆 on happy
routes. The additional travel time for happy routing does
not scale linearly with the emotional weighing factor 𝜆. On
average, the setting 𝜆 = 40 achieves a similar time divergence
to 𝜆 = 100.

segments with a higher predicted happiness score, higher curviness,
higher freeflow speed, and maximum speed.

Curvy roads tend to increase driving enjoyment but also inhibit
driving accident risks [35]. Unhindered traffic scenarios can be
captured by our proxy variable free-flow speed, which is higher for
happy routes and increases driver well-being [63]. We detected no
significant effect of the satellite-image-derived greenness (known
part of the HSV spectrum) in happy routes compared to the fastest
route (𝑝 = .29). Finally, we found that on-average happy routing
includes significantly more residential roads. We believe that this is
due to the fact that residential roads often have reduced traffic and
may reduce drivers’ stress, leading to a more happy emotional state.
In contrast, the recommended fastest routes contained significantly
more living street and primary road segments, which often require
more driver attention. As stated before, these findings are based on a
large sample size and do not represent an individual recommended
route.

6.4 Computational Characteristics
Navigation systems deployed in the wild require high scalability. To
assess the computational complexity of our system, we computed
the execution time of the routing endpoint (GraphHopper). On the
12 × 12 km map, our system needs to perform emotion prediction
on 21, 673 unique edges, caching the corresponding data in the
optimization graph. The cache is needed because the input data is
collected from various APIs, which makes on-demand prediction
attainable when optimizing the route. In a subsequent step, the exe-
cution time for recommending happy routes is 0.08± 0.075 seconds
and takes longer to compute than the fastest routing 0.01 ± 0.004.
With recommendation times smaller than 1 second, our system is
highly time-efficient and user-friendly.

7 Discussion
With HappyRouting, drivers perceived a higher valence when us-
ing the happy route than the fastest route, showing that choosing
emotionally positive routes contributes to a driver’s well-being. In
the following, we discuss the implications of our results.

7.1 Tradeoff Between Valence and Route
Duration

In contrast to previous work [75], we empirically evaluated the
impact of HappyRouting in real-world driving scenarios. Our re-
sults suggest a tradeoff between the duration of the fastest route
and the perceived valence of driving the happy route. Although
the happy route takes longer, our participants subjectively pre-
ferred HappyRouting for their navigation to improve their emo-
tional well-being. This confirms previous findings regarding the
implementation [48, 75] and user-centered evaluation in laboratory
settings [9, 38]. In this context, our results are in line with previ-
ous research that participants prefer emotional navigation [38] .
However, due to the longer travel times, most of our participants
indicated that they would prefer the HappyRouting if they were
not pressed for time. In addition, our study results suggest other
modalities for controlling driver emotions by combining the in-
vehicle environment with the suggested happy route. For example,
participants suggested to explore music in combination with happy
routes to enhance feelings of happiness. Using individual prefer-
ences for the in-vehicle environment as an additional variable can
lead to emotion prediction models that ultimately reduce driving
time. However, combining in-vehicle adaptions with happy routes
proposed by HappyRouting requires further research. Overall, nu-
merous transportation studies have researched the willingness to
pay, i.e., how much time and money people are willing to spend
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Figure 10: Characteristics of happy route vs. fastest route.
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Figure 11: Analysis of road types of happy routing vs. fastest
routing. We assessed the road type of every road segment
(x-axis) and computed the drive-time normalized route du-
ration (y-axis). All presented road types have been tested to
be significantly different (𝑝 < .01). Residential roads were
found in living areas, primary road types are major high-
ways linking large towns, and tertiary roads connect minor
streets to more major roads.

for an alternative route choice. The admissible detour duration is
highly dependent on the situation and the individual [16]. Self-
centered situations, such as avoiding danger, reach much higher
detour acceptance and decline more slowly with longer detours.
The user acceptance drops to the 25% plateau at 8-min detours for
jam-related situations [47].

7.2 Benefits of HappyRouting
The emotional state of drivers plays a critical role in road safety,
as it has been shown that negative emotions, such as anger, can
significantly increase accidents [73]. More specifically, it has been
shown by identifying common emotional triggers based on their
originating source via driving self-report that the most frequently
elicited negative emotions come from the navigation interface of
the car. Therefore, car systems proposing appropriate interventions,
such as improving the routing choice, are helpful in improving road
safety and enhancing the driving experience. Future work will ex-
amine the safety reduction potentials of different route choices.
By promoting positive emotions through navigation choices, Hap-
pyRouting introduces a novel paradigm in safety-aware routing,
reducing emotional distress and fostering a more composed driving
experience.

7.3 Using HappyRouting for Other Transport
Modalities and Types

HappyRouting generates routing decisions that can be used in
various other transportation modalities once the foundation for a
context-aware machine learning classifier is established. With a few
modifications, HappyRouting can apply emotion-based navigation ,
for example for cyclists, by predicting emotionally pleasant cycling
routes. We propose incorporating advanced contextual sensors

when optimizing happy routes for other road users (e.g., pedestri-
ans or cyclists) by extending the feature set to include elevation
information and information about road intersections. For the ap-
plication of HappyRouting in pedestrian routing, we recommend
extending our feature set to include traffic-banning features, as
these have been shown to influence valence [56] positively. Such a
set of features can extend existing work investigating the relevance
of contextual driving features regarding classification accuracy.

Implementing HappyRouting for autonomous vehicles presents
several unique challenges and opportunities. The emotion predic-
tion model may exhibit very different characteristics when the
vehicle operates autonomously. Considering the emerging problem
of motion sickness in automated vehicles [19], a traffic jam may be
more acceptable in favor of less crowded roads in the countryside.
As users may engage in different primary activities, such as work-
ing or watching movies, future research must explore the emotional
impact on these activities associated with driving.

7.4 Ethics & Societal Impact
We emphasize an ethical and transparent use of HappyRouting for
application purposes and stress that emotions are intimate, personal,
and vulnerable [2]. The Emotional Artificial Intelligence ethics
guidelines by McStay et al. [51] provided us with a meaningful
reference to cover personal, relationship, and societal aspects.

Our approach is privacy-aware because it uses a machine learn-
ing model based on an aggregate, anonymized dataset provided in
advance by a set of volunteers rather than subconsciously assessing
the emotions of individual HappyRouting users. On the other hand,
we also see clear limitations of our dataset in the area of cultural
and regional diversity and the explainability of resulting algorithm
choices. Future empathic car interfaces must communicate how
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and what data is assessed to clarify how this subsequently affects
the users’ privacy.

Undeniably, the regulation of emotions by technological sys-
tems is highly controversial, as psychological effects are largely
unknown. Avoidance of negative situations, for example, is an es-
sential strategy of human emotion (self-)regulation [50], but also
an implicit result of our system’s promotion of positive emotions.
Studies with individuals have shown that situation avoidance re-
sults in decreased learning and adaptation abilities, as well as social
and anxiety disorders [1]. Therefore, we emphasize that such short-
and long-term effects must be investigated in future work.

Our study of route characteristics shows that heavily traveled
routes are often avoided in favor of quieter routes. To us, this is a
clear indication for future work, as these externalities at large scale
can potentially affect residential areas, parks, or nature, as Johnson
et al. note [41]. This raises concerns that optimizing on happiness
could further contribute to the frustrations about increased traffic
in previously low-trafficked neighborhoods.

We showed that routes proposed by HappyRouting result in
increased travel times, ultimately bound to higher energy con-
sumption. From an environmental standpoint, this higher energy
consumption might be harmful. Overall, no ethical guideline would
prioritize one’s happiness over the negative externalities that may
result from their navigation choice [6]. Moreover, prioritizing per-
sonal happiness over social and environmental responsibility may
also perpetuate a culture of individualism that values personal
satisfaction over the greater good. Therefore, it is imperative to
consider the broader social and environmental implications of rout-
ing decisions, while striving to balance personal happiness and the
well-being of others and the planet. Certain route choices might af-
fect the safety of traffic participants, for example, due to a model’s
preference for specific road types. These and many other route
characteristics must be communicated transparently to the users to
promote their autonomy and enable highly informed choices [51].
Alternative strategies could comprise correction terms applied to
our optimization, for example, when the routing choice is not de-
sirable on a societal basis (e.g., routing through densely populated
areas) [41].

7.5 Limitations & Future Work
Our work takes the first steps towards a novel type of empathic
car interface based on emotional predictions and optimizations
through routing. To achieve this goal, we accepted several limita-
tions in the domains of psychology, algorithms, and user experience.
First and foremost, the psychological model of fostering well-being
through aggregation of positive emotions is deliberately oversim-
plified, as discussed in Section 3. Future models could operate on a
diverse emotional flow [45], which requires significant changes to
the optimization method and its proven graph algorithms. Yet, the
system’s ability to generalize across unseen environments relies on
its subject-independent emotion prediction approach. While indi-
vidual adjustments could further refine classification accuracy, our
current implementation provides a scalable solution for real-world
deployment.

Utilizing emotion-related signals during driving would enable
the dynamic updating of the predicted emotional weights and real-
time adaptation of the happy route. This feature can be easily in-
tegrated into the current system architecture, but it should be ap-
proached with caution as it has the potential to be perceived as
privacy-intrusive. However, the benefit of our non-interactive emo-
tion navigation system is that it allows for an empathic interface
without compromising privacy during operation, and the option to
switch to a different routing modality can be easily selected at any
point during the journey.

HappyRouting requires the ability to simulate the driver’s emo-
tions for any road segment at any time while considering contextual
information like traffic, road types, and speed limits. A key design
decision for simulation lies in the choice between subjective and
objective metrics for characterizing user emotions. HappyRout-
ing relies on a dataset containing self-expressed and thus subjec-
tively perceived emotions for prediction. Consequently, we base
the simulated emotions on discrete representations of emotions, as
identified by Ekman [25]. The use of subjectively expressed emotion
labels could also be accompanied by the integration of physiolog-
ically derived labels into the emotion prediction model [40]. By
incorporating data such as heart rate variability, skin conductance,
muscle stiffness [3], and facial expressions [48], a hybrid model
(objective & subjective) could further enhance the accuracy of the
emotion predictions. Related works by Wang et al. [75] and Zepf
et al. [79] highlight the potential of bridging live emotions with
future recommendations or an adapted system behavior. At the
same time, the car offers only a limited set of remotely accessi-
ble contextual features for predicting driver emotions, making the
modeling complex.

Our navigation framework is based on an emotion prediction
layer, which can be adapted easily to additional modalities. Weight-
ing in objective parameters such as the greenness score [4] could
promote user-specific preferences without needing a personalized
emotion model. On the other hand, user-dependent models can
further increase the accuracy, as shown in related work [3, 9].

We acknowledge the sample size limitation (N=13), which im-
pacts statistical power. A follow-up longitudinal study with a larger
and more diverse participant pool would strengthen our findings
and enable examining long-term behavioral effects of affective navi-
gation. Yet, it is noteworthy that our research represents the first at-
tempt to conduct such a study in a real-world driving environment,
including a user evaluation with a functional routing application
for unseen roads. We plan to conduct a large-scale study with a
more extensive participant pool to address this limitation, incor-
porating varied routes and study durations. This will be achieved
by leveraging crowd-sourcing methods by, for example, distribut-
ing HappyRouting through app stores, thus extending the reach
of HappyRouting to a broader user base and including diversity in
our dataset.

Finally, we see limitations in explaining the overall recommenda-
tion process to the end user, which is ultimately very important for
the ethics and transparency of our system. The transparency can
lead to placebo effects, where the description of using an allegedly
adaptive AI-driven system biases the perceived system utility for
drivers [46]. In future work, we plan to summarize how route rec-
ommendations were computed on an individual user’s basis and
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research how to communicate key emotional route segments [12].
Finally, further long-term experiments with a larger variety of roads
and routes under vastly different conditions are needed to produce
necessary evidence of the proposed model’s ability to find happy
routes. These long-term studies in the wild may help better to
understand the effects and societal impact of affective routing.

8 Conclusion
This paper presents HappyRouting, a new type of empathic inter-
face capable of navigating by positive emotions. We used personal,
environmental, and road-specific information to define a custom
emotion routing graph that optimizes routes for happy emotions.
This paper validates this novel routing concept through several
validations showing external and internal validity. The machine
learning classifier used to predict emotion weights has been shown
to be able to predict emotions on unseen road elements and dri-
ver emotions. Furthermore, a real-world driving study and simula-
tion study demonstrated its generalizability to extend to unknown
routes. Our user study showed that HappyRouting elicits positive
emotions through navigation. As a consequence, HappyRouting
requires more driving time which was accepted by our participants
as long as the circumstances allowed it (e.g., no time pressure). Our
work is not only relevant to driving but can also be applied to other
areas of mobility and autonomous driving.We are confident that the
presented process of simulating emotions and evaluating different
paths through many potential user journeys can be generalized to
an even wider variety of use cases. To encourage the reproducibility
of this paper and engage research in this area, we published the
source code of our system and the data set for further analysis by
the research community10.
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A Appendix
Curviness Computation
We computed the curviness using a weighted measure of the length
of curves, which depends on the radius of a circumscribed circle
that passes through all three consecutive geocoordinates in a route.
Given 𝑎, 𝑏, 𝑐 as the length of the three sides of a triangle, the radius
of the circumcircle is given by the formula:

𝑟 =
𝑎𝑏𝑐√︁

(𝑎 + 𝑏 + 𝑐) (𝑏 + 𝑐 − 𝑎) (𝑐 + 𝑎 − 𝑏) (𝑎 + 𝑏 − 𝑐)
(3)

Classifier Feature Importances
We analyzed how decisive each contextual input feature is for
our human emotional state classification model. We extracted the
feature importance (Gini impurity) of the input variables in a leave-
one-participant-out situation in Figure 12. The variable ’greenness’
shows the highest importance for the classifier in predicting the
likely emotional state on the road. This likely comes from the fact
that roads with high green value scores likely go through rural
areas with less traffic flow influencing emotions positively. Thus,
’greenness’ is a good proxy input for positive emotional states 11.

The feature importances are aggregate metrics and do not convey
participant-dependent importance measures for a specific routing
choice (local feature importance measures such as SHAP values
are needed). Here, we only analyzed the feature importance of the
emotion classification model, a route-specific analysis of the road
properties can be found in Section 6.3.
11The training data of the classifier is unbiased, containing green areas and urban road
data.

In-the-Wild Driving Study
The in-the-wild driving evaluation routes were 7.5𝑘𝑚 (fastest) and
8𝑘𝑚 long and went through urban and rural neighborhoods. In
Table 4 we present the study questions used in the in-the-wild
driving evaluation of our system.

Emotion Classifier Dataset
Dataset Generation Procedure. An iOS app was developed to track

GPS and video during car rides. The smartphone app gathered in-
formation about the road type, greenness, traffic flow, and other
variables to describe the driving context. Upon hearing a beep, par-
ticipants were asked to self-report their emotions every 60 seconds.
The participant’s self-reported emotions were the ground truth in
this real-world experiment. The timing of these prompts was fine-
tuned in a small pre-study to ensure safety andminimize distraction.
Most participants found these prompts non-disruptive, responding
within an average of 1.8 seconds. Additionally, participants were
provided with a list of basic emotions before the experiment. Partic-
ipants were drawn from a group of willing colleagues contacted via
a mailing list, prepared by downloading our iOS app and securing
a windshield smartphone holder. Before their next drive, they en-
gaged in a remote conversation with the study instructor, sharing
demographics, driving habits, and pre-ride emotions. Following
an introduction to the app, they commenced recording, drove to
their destination, saved recordings post-ride, and subsequently
connected with the instructor. During this call, they discussed note-
worthy driving incidents and their emotional experiences before,
during, and after driving. Ethical approval was granted by the in-
stitutional review board of the university department.

Emotion Labeling. For the emotion classifier, we leverage existing
approaches that link real-world context and emotions [8, 9]. The au-
thors built an iOS app to record GPS and video during car rides and
compute variables continuously. Participants were asked to use this
app and attach their phones to the windscreen during their next car
ride. The authors recorded the daytime and participants’ emotions
at the ride’s beginning. A beep tone was triggered every 6 seconds
for participants to verbally provide their currently perceived emo-
tions. This emotion probing corresponds to the in-situ categorical
emotion response (CER) rating for collecting data on emotional
experiences in vehicles [21]. Before starting the experiment, par-
ticipants were instructed about the set of available emotions (i.e.,
Ekman’s basic emotions [24]). The verbally expressed emotions
were recorded and analyzed afterward using a speech-to-text al-
gorithm. In a pre-study (𝑁 = 5), the time interval of the prompts
was optimized to ensure safety, minimize annoyance, and appro-
priately cover the felt emotions. Participants found these prompts
non-disruptive, responding within an average of 1.8 seconds.

Dataset Description. The dataset contains 26 participants (17
male and 9 female) with an average age of 30 years (SD = 5.56) from
Germany, Brazil, and Poland. Most driving sessions (69%) occurred
in Germany, followed by Brazil (23%) and Poland (9%). Participants
reported driving frequently (57% over 30,000 km/year), moderately
(19% between 10,000 and 20,000 km/year), or less frequently (23%
below 10,000 km/year). Driving sessions included rural and urban
roads, lasting an average of 24 minutes (SD = 12, min = 7, max =
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Figure 12: Feature importances measured by the mean decrease of Gini-impurity for the Leave-One-Participant-Out cross-
validation.

Table 4: Questionnaire of the in-the-wild driving experiment.

Question Example answer

What car do you drive? VW Golf
Your age 39
Your sex female
How frequent do you drive? (km/year) occassional: <10.000km/year
When did you drive today? in the morning
How do you feel before driving? (valence) 3 (of 5)
How do you feel before driving? (arousal) 5 (of 5)
How do you feel before driving? (dominance) 4 (of 5)
Other notes / suggestions? None
What navigation mode did you drive? navigation mode 2
How do you feel after driving? (valence) 2 (of 5)
How do you feel after driving? (arousal) 4 (of 5)
How do you feel after driving? (dominance) 4 (of 5)
Were there any specific incidence while driving? Slow trucks in front of me
Do you know the route 1? (Have you ever driven this route?) Partially
How would you describe route 1? Slow, green and full of Blitzer
Select all adjectives that in your opinion describe route 1 (select as much adjectives as you want) Green, Smooth, Relaxing
How do you feel before driving? (valence) 2 (of 5)
How do you feel before driving? (arousal) 4 (of 5)
How do you feel before driving? (dominance) 4 (of 5)
What navigation mode did you drive? navigation mode 1
How do you feel after driving? (valence) 3 (of 5)
How do you feel after driving? (arousal) 3 (of 5)
How do you feel after driving? (dominance) 3 (of 5)
Were there any specific incidence while driving? Lkw and trucks in front of me
Do you know route 2? (Have you ever driven this route?) Yes
How would you describe route 2? A lot of construction work and interruptions
Select all adjectives that in your opinion describe route 2 boring, bumpy, relaxing
I agree with the following statement: "I feel route 1 is faster than route 2" equal
I agree with the following statement: "I feel route 2 is faster than route 1" equal
Which route would you rather choose? Route 1
Why? Felt smoother
I agree with the following statement: I feel route 1 makes me happier than route 2? (ordered and preprocessed response) yes
Do you feel route 2 happier than route 1? no
Do you feel route 1 happier than route 2? yes
How much time you would like to sacrifice to drive a happier route (assuming 20 minutes drive for fastest route)? 3-5 minutes
What did you do apart from driving? Applies to both driving modes hearing music/radio, talking to passengers
Does something about the Happy Navigation idea bother you? You drive more
When (under which circumstances) would you use Happy Navigation? When I am somewhere new (e.g., holiday), start the day smoother, when I have more time, when I want to listen to a podcast
What determines your ideal happy driving route (road elements, scenery)? Green, drive by forest, less cars, rapsfelder
When would you use Happy Navigation? In the morning
What features in the car would you find interesting using the Happy Navigation? I would want to see if I drive the happy route (transparency)
How likely would you use this system? 3 (of 5)
Do you think there are any societal and ethical implications of this navigation functionality? And if yes, which one? Fuel or energy consumption increases, invisibility of unhappy places and roads and their existences, self enforcing effect
Other notes/suggestions? None

52) with 5.6 changes in road type per ride. Participants typically expressed 5.21 distinct emotions during their rides, with an aver-
age time of 2 minutes (SD = 2.5 minutes) between each expressed
emotion.
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