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Figure 1: System architecture overview. ITER takes any multivariate time-series as an input (here: contextual vehicle variables)
and performs a time-series classification (here: predicting driver emotions) while providing explainable feature maps, which
display feature importance of the model’s prediction over time.

ABSTRACT
Emotion prediction is important when interacting with computers.
However, emotions are complex, difficult to assess, understand, and
hard to classify. Current emotion classification strategies skip why
a specific emotion was predicted, complicating the user’s under-
standing of affective and empathic interface behaviors. Advances in
deep learning showed that convolutional networks can learn power-
ful time-series patterns while showing classification decisions and
feature importances. We present a novel convolution-based model
that classifies emotions robustly. Our model not only offers high
emotion-prediction performance but also enables transparency on
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themodel decisions. Our solution thereby provides a time-aware fea-
ture interpretation of classification decisions using saliency maps.
We evaluate the system on a contextual, real-world driving dataset
involving twelve participants. Our model achieves a mean accuracy
of 70% in 5-class emotion classification on unknown roads and out-
performs in-car facial expression recognition by 14%. We conclude
how emotion prediction can be improved by incorporating emotion
sensing into interactive computing systems.
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1 INTRODUCTION AND BACKGROUND
Interacting with computing systems can induce a variety of emo-
tions due to a combination of how one feels before, during, and after
an interaction. Knowing the user’s emotional state offers numerous
possibilities for empathic and affective interfaces (e.g., emotion-
adaptive lighting and design of emotion-dependent interaction pat-
terns). However, due to the person-specific and privacy-concerning
characteristics of emotions, there is a pressing need for emotion
recognition engines to provide explanations on how the emotion
prediction was made by opening the “black-box” prediction model.
Providing explainable post-hoc visualizations can help the users
to understand better employed empathic controls (e.g., changing
of lighting because of detected emotions [17]) and reduce privacy
concerns. Already in 2000, Picard [32] coined the term “Affective
Computing”, envisioning computers to express, sense, and predict
emotions. Such interfaces have gained increased attention in nu-
merous areas, such as the automotive sector or within the domain
of recommender systems, to sense and regulate user emotions. Dif-
ferent sensors were investigated to detect emotional states, such
as facial expression [20, 25], voice analysis [16], self-reports [7], or
physiological sensing [5, 12].

Facial expressions have a long tradition as an indicator for the
expressed emotions [14] and are used in a variety of software frame-
works1. Typical facial expressions include smiling or frowning as
well as head gestures (e.g., nods and tilts). The detection of facial ex-
pressions requires a remote camera within the user’s environment,
such as RGB cameras [10, 27, 30] or infrared cameras [15]. How-
ever, facial expressions can be misinterpreted without involving the
user’s context [20] and subjective interpretation [23]. In contrast,
physiological sensing utilizes the user’s direct bodily responses to
draw conclusions about the emotional states. Several physiological
sensing modalities, such as heart rate, electrodermal activity, and
electroencephalography [4, 13, 37], are indicative of the user’s per-
ceived emotions. However, such sensors require direct contact with
the user (e.g., an electrodermal activity sensor attached to the user’s
hand). Body-worn sensors can thus impact the user experience and
usability negatively [40].

Various emotions can be elicited depending on the user’s context.
For example, driving is a common use case when studying user
emotions [6, 9, 37]. Thus, various datasets exist that allow to com-
pare the performance of different classification techniques [3, 6].
Previous research hypothesizes that the driving behavior, style,
and context are indicative of the currently perceived emotions [29].
Here, behavioral characteristics are viewed as emotional markers.

However, improving time, impact, and the temporal context of
emotion classification has not been studied so far. We close this
gap by presenting an explainable model called ITER - Interpretable,
Time-Based Emotion Recognition, where time-dependent contex-
tual features can be analyzed for their influence on emotions. Since
driving datasets contain a large variety of perceived emotions, they

1For example Affectiva: www.affectiva.com

are interesting to evaluate emotion classification techniques. Emo-
tion estimation from contextual data is favorable as it becomes less
privacy intrusive and no body-worn sensors are required. Thus, we
are focusing on emotion classification using driving datasets.

Numerous emotion classification methods exist. In general, there
are several methods for explaining model decisions, where essential
ones can be grouped into local approximation [26, 33], backpropa-
gation [34, 39] and input-masking based [31, 36] approaches. Using
convolutional networks, we focus on visual interpretability in the
form of saliency maps as they display feature time dependencies.
They are defined as the weighted combination of the model’s fea-
ture maps which provide insights into the network’s attention
toward feature-time instances within a specific sample. The feature
maps are weighted by individual scores based on their contribution
to the classification process. We propose to use a gradient-based
method [34] combined with a forward-scoring method [36] to build
interpretable feature maps. Our feature map thereby determines
and visualizes the importance of the neurons for the classification
decision. We omit the disadvantages of gradient-based methods
for importances suffering from vanishing gradient problems by
considering forward- and backward-importance derivatives when
calculating the feature map.

Assaf et al. [1] introduce the MTEX-CNN, an architecture that
performs time-series classification and explains its predictions by
generating saliency maps from a convolutional layer. The creation
of these saliency maps relies on the aforementioned Grad-CAM
approach. By applying a convolution along the time dimension
for each feature, they can retain the importance of an individual
feature for time for a classification decision. Furthermore, in order to
account for inter-feature dependencies, they apply a 1D convolution.
When extracting saliency maps from this layer, they can infer the
network’s attention over all features towards specific time steps.

Tang et al. [35] propose an omni-scale 1D-CNN architecture for
time-series classification that aims to cover a wide range of different
receptive fields while relying on only a few layers. In contrast to
related work, which defines a kernel configuration for parallel 1D-
CNNs, we define a configuration for parallel 2D convolutions to
retain the individual feature importance over time and thereby
ensure feature-wise interpretability. Furthermore, to the best of
our knowledge, no emotion predictor model exists that models the
time-feature correspondence.

CONTRIBUTION STATEMENT
This paper makes the following contributions: (C1) We propose
a learning architecture to include time as a variable in emotion
recognition systems. (C2) We perform emotion classification with
respect to time and contextual dependencies. These dependen-
cies are interpreted with saliency maps that are extracted with
a gradient-based and a forward-score-based approach. (C3) We
present a novel parameter-efficient modeling structure for inter-
pretable time-feature machine learning classification, making it
useful for small-scale HCI datasets.

2 SYSTEM
In the following section, we describe our technique in detail. Our
system needs to make sure to entail the following requirements:

https://doi.org/10.1145/3544549.3585672
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Figure 2: Network architecture of our interpretable time-series classification system. The architecture consists of two stages,
where the first consists of parallel 2D convolution layers that preserve the feature dimension. The second stage consists of a 1D
convolution layer, where the resulting feature maps are flattened and forwarded to a dense and the final classification layer.

(1) learning time dependencies in the input space, (2) applicable
to small-scale HCI datasets, and (3) preserving feature explainabil-
ity over time. The architecture proposed is outlined in Figure 2.
It is composed of two subsequent parts, where the former deals
with determining individual time-dependent feature importance
while the latter focuses on determining time importance over the
complete feature set. We consider a multivariate time series input
for our multi-class classification problem. In order to make our
model adaptive to small-scale experimental HCI datasets, we aim
to minimize the number of trainable parameters. Inspired by [35],
we define an architecture that captures a maximal variation of re-
ceptive fields while using a minimal amount of layers by applying
different kernel sizes in parallel at several stages in the network.
While [35] apply this approach to 1D convolutions, we apply it on
our parallel 2D convolution layers where the kernel size is kept
constant along the feature dimension. Thus, when applying the
gradient and forward score-based approaches, we can distinguish
between individual feature contributions toward the decision. This
is essential for the user to infer the influence of the time-context
instances on the emotion classification. Due to the success of Grad-
and Score-CAM in explaining image classification decisions we
choose a CNN-based architecture due to their compatibility with
these explainability methods.

Building Interpretable Feature Maps. The feature maps that we
generate are saliencymaps that help the user understand themodel’s
decisions. The activation feature maps that are extracted from the
last 2D convolution layers represent a visualization of the network’s
attention towards specific features over time to a particular classifi-
cation decision.

We determine activation feature maps based on the Grad-CAM
method introduced by [34] and the Score-CAM method from [36].
Both Grad-CAM and Score-CAM are needed, as Grad Cam uses
backward gradient calculation of feature importances, whereas
Score-CAM is able to escape the vanishing gradient problem and
uses forward-pass scores concerning the target class. In Grad-CAM,

we calculate the gradients of the class with respect to the activations
and average over the number of time instances of all features. A high
value indicates a strong contribution of the individual instances
in the feature maps towards the classification of the specific 𝑦
class. On the other hand, we use the Score-CAM method from [36],
which deals with possible shortcomings of gradient-based methods
like the vanishing gradient problem. The approach does not rely
on the gradient-based weights by determining the activation map
weighting through the forward pass scores concerning the target
class. We achieve an interpretable feature map by summing up
and normalizing the resulting weighted feature maps from the two
convolution layers of the second stage for each of those methods.
We describe the detailed calculation method in the Appendix. A
comparison between feature maps of those two methods will be
presented in Section 4.

3 DATA
The data used for ITER consists of acquired contextual driving data
from an in-the-wild study [6] and is published open-source2. In total,
12 participants (2/12 self-identified as female) with an average age
of 27 years (SD = 4.73). Six of the participants occasionally drive (i.e.,
less than 10,000 kilometers per year), where three participants drive
moderate distances (i.e., between 10,000 and 20,000 kilometers per
year), and three participants drive more frequently (i.e., more than
20,000 kilometers per year). The mean duration of the rides is 10
minutes (min = 6, max = 44). The data from all participants consists
of 160 driving minutes sampled at 1 Hz, which corresponds to 9600
samples. The ground-truth emotion label capturing is designed in
correspondence to the in-situ categorical emotion response (CER)
rating for collecting data on emotional experiences in cars [11].
We consider the emotions ‘angry’, ‘disgust’, ‘happiness’, ‘neutral’,
and ‘surprise’. A speech-to-text engine from the smartphone audio
recording is used to extract the emotion label 𝑦, as the participant
had to verbally provide their discrete emotion label every 60 seconds
2https://github.com/david-bethge/VEmotion
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after a beep tone. A windshield-mounted smartphone recorded the
driver’s facial expression and contextual data. However, during
our evaluation, we do not rely on these facial expressions. The list
of available contextual features with exemplary values is shown
in Table 2. We refer to the original paper for more details on the
dataset and acquired emotional markers.

During preprocessing, we replace missing categorical and dis-
continuous values with the last recorded valid value and further
replace the rest of the missing values by backpropagating a subse-
quent value to past time steps. Missing continuous numerical values
like vehicle speed are replaced by applying kNN imputation [38].
This method ensures that we can prevent discontinuous changes
between valid recorded and imputed values. As our architecture
expects a fixed input size, we use a sliding window approach similar
to [24] with a stride of 1 on the multivariate time series to generate
samples of size 𝐹 ×𝑇 . The corresponding label for each window is
defined as the label with the most occurrences within the window.
We address the challenge of learning long-term emotion depen-
dencies in the discussion section. We choose a window size of 20
as this has shown the best experimental recognition performance
validated in an extensive window-size grid-search3.

4 RESULTS
In this section, we analyze the emotion recognition performance
of our system and compare it with related work. Furthermore, we
explain and interpret the feature maps that our model outputs and
compare the feature maps resulting from the gradient and forward
score-based approaches.

For a baseline comparison, we evaluate our model using a 10-
fold cross-validation similar to [6]. For each participant within the
dataset, we leave one of the ten road segments out for evaluation
and use the remaining road segments for training. A road segment
is obtained by splitting the participant’s driving session into ten
parts. This evaluation teaches a global participant-independent
model that can predict emotions on unknown road segments. Our
model’s results are depicted in the confusion matrix in Figure 3a.
Overall our model achieves an accuracy of 70% and a 𝐹1 score of
69%. Besides that, ITER reaches a recall value of 51% on the ’happy’
emotion, 82% on the ’neutral’ emotion and 40% on the ’surprise’
emotion. Nonetheless, we detect a poor classification performance
for ‘angry’ and ‘disgust’ states. In particular, this is likely due to
the skewed distribution of subjectively felt emotions. The emotions
‘angry’ and ‘disgust’ are underrepresented in the data as they only
account for 1.3% in the former and 0.6% in the latter case.

We compare our model to the Random Forest classifier of VEmo-
tion [6] and the Microsoft Face Recognition API [28], which both
do not consider time during classification. Furthermore, for compar-
ison, we choose models that also consider the temporal dimension.
In particular, these are a two-layer LSTM model, a two-layer 1D-
CNN, as well as the MTEX-CNN [1], which utilizes 2D and 1D
convolution layers. From Table 1, we can observe that the accuracy
and the 𝐹1 score of our approach are 2% lower than the ones of the
VEmotion model. The difference in performance is likely caused by
our system’s windowing preprocessing of the data, leading to an
even smaller training dataset during cross-validation. In order to be

3the window-size search space was set to {30,25,20,15,10}.

able to exploit time dependencies more efficiently, the average time
of a driving session and the number of participants will have to be
extended. In the case of a larger dataset, time-series-based methods
like our approach are likely to improve their performance results.

Emotion classification with the Microsoft Face Recognition API
based on facial video data is outperformed by our system by 14%
in terms of accuracy and 18% in terms of the 𝐹1 score. This indi-
cates that facial expressions in a driving context are less expressive
than time-dependent context features. When comparing our ar-
chitecture to the two-layer 1D-CNN architecture, we can see that
ITER achieves a 5% better accuracy and a 6% better 𝐹1 score. This
increase implies that capturing a large range of receptive fields
improves classification performance. Similarly, the two-layer LSTM
model struggles to classify infrequent classes, which is indicated
by the 14% lower 𝐹1 score compared to our model. In the case
of the MTEX-CNN, the model seems to be less adapted towards
imbalanced datasets, which is indicated by the 3% lower 𝐹1 score
compared to our model. Furthermore, our model consists of about
20% of the trainable parameters of the MTEX-CNN. The models’
relatively higher accuracies result from the dataset’s imbalanced
nature, where the neutral class is the most frequent.

Overall our model performs better in terms of accuracy and
F1-score than the other models except for the Random Forest clas-
sifier introduced by [6]. However, their approach and the Microsoft
Face Recognition API do not consider time dependencies in the
data and cannot provide per-sample feature-wise explanations for
emotion classification. While being able to consider time depen-
dencies, up to our knowledge, there is no method to recover in-
dividual feature-time contributions from cell states in the LSTM
model able to provide visual explanations. The 1D-CNN cannot
provide feature-wise explanations as it applies a kernel over the
whole feature dimension. The MTEX-CNN and our ITER model can
consider time dependencies and provide feature maps that display
the feature-wise importance over time.

Table 1: Emotion recognition performances of different clas-
sification models. The table further includes the models’
properties time dependency and interpretability. Hereby,
interpretability refers to the feature-wise explanation for
classification decisions based on saliency maps. We compare
our system to VEmotion [6], a facial expression classifica-
tion system Face [28], a LSTM deep learning model [18], a
1d-CNN [19], MTEX-CNN [1].

VEmotion Face LSTM 1D-CNN MTEX-
CNN

ITER
(ours)

accuracy .72 56 .64 .65 .68 .70
𝐹1 score .71 51 .55 .63 .66 .69
time dependency ✗ ✗ ✓ ✓ ✓ ✓

interpretability ✗ ✗ ✗ ✗ ✓ ✓

In this section, exemplary interpretable feature maps that result
from the normalized weighted summation over the feature maps
from the last 2D convolution layers are examined. Figure 3b displays
an example of a multivariate time series within a 20-second window
labeled with a happy emotion. Furthermore, we visualize the feature
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(a) Normalized confusion matrix. (b) Visualization of the input features.

Figure 3: (a): Normalized confusionmatrix of the results of ITERwith amean accuracy of 70% based on a 10-fold cross-validation.
(b): Visualization of the normalized input features from a multivariate time series sample corresponding to a happy emotion.

(a) Feature map based on Grad-CAM (b) Feature map based on Score-CAM

Figure 4: Feature maps based on the Grad-CAM and Score-CAM approaches resulting from the input of Figure 3b. The 𝑦-axis
corresponds to the contextual feature streams, whereas the 𝑥-axis shows the ascending time towards the most recent timestamp
(the timestep 20 contains the most recent data).

vehicle speed exemplarily. The ascending time scale corresponds to
the progress towards the most recent timestep. We normalized the
input over the features, where yellow indicates the highest value
and dark blue indicates the lowest value. Additionally, the vehicle
speed feature column is visualized in a graph for the 20 seconds
time window.

The interpretable feature maps displayed in Figure 4 represent
the network’s attention towards specific time instances of features
which are, on the one hand, determined by the gradient-based ap-
proach and, on the other hand, based on the forward pass scores of
the masked inputs. As the whole feature map is normalized, yellow
spots represent high attention, green spots medium attention, and
dark blue spots low attention.

When looking at the feature map resulting from the Grad-CAM
approach, which is shown in Figure 4a, we can observe that es-
pecially 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑠𝑝𝑒𝑒𝑑 , 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑙𝑎𝑛𝑒𝑠 , 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ,𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑

and 𝑟𝑜𝑎𝑑 𝑡𝑦𝑝𝑒 seem to be essential for the classification decision
of this happy sample. Moreover, when comparing 𝑟𝑜𝑎𝑑 𝑡𝑦𝑝𝑒 time
instances of the feature map with the input, especially changes
in 𝑟𝑜𝑎𝑑 𝑡𝑦𝑝𝑒 seem relevant for the classification decision. Further-
more, the model puts a higher focus on low acceleration values as
the specific time instances of the input have a higher weighting in
the feature map. From the feature map in Figure 4b created based
on the Score-CAM approach, we can observe that the attention
intensity differs from the Grad-CAM feature map. For example, the
most recent time instances of the essential features are weighted
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relatively higher in Figure 4b compared to the Grad-CAM feature
map. However, the general importance of a feature’s relevance for
the classification decision is comparable to the Grad-CAM feature
map. We showed that we could extract time-dependent feature
interpretations for an emotion classification in the form of saliency
maps. Furthermore, we provided sample-specific explanations for a
classification decision based on contextual features. The two pro-
posed feature map generation methods have shown valid outputs
and can both be used for emotion classification interpretation from
contextual data streams.

5 DISCUSSION
Human-in-the-Loop for Emotion Recognition Models. Our method

allows us to understand better the relationship between environ-
mental, emotional triggers, and emotional states. The time-feature-
dependent understanding is favorable for the emotion recognition
developer in knowing why a specific decision has been made and of-
fers the user a transparent way of knowing why a machine learning
decision based on his emotional state was made. This interactivity
between humans and machine learning systems is crucial, espe-
cially when developing empathic interfaces for in-the-wild use.
Furthermore, by providing a more direct assessment of emotion de-
tection, our model can be seen as another step toward transparency
in empathic interfaces, which are a major limiting factor in the
development of large-scale employment [8].

The proposed methodology for generating interpretable feature
maps can be applied to a wide range of HCI scenarios. We could
analyze which contextual feature changes induced an emotion
change in an automotive context and thus infer specific emotional
triggers. These could then be consumed by a routing algorithm that
adapts correspondingly, e.g., by avoiding specific road attributes. In
the case of developing empathic car interfaces, being able to detect
emotions and interpret the classification process is essential. The
system could display its reasoning process with the help of feature
maps to the driver and thus improve the transparency of model
decisions. This could further improve the driver’s trust in the system.
Recent research by Atakishiyeva et al. [2] stresses the significance
of explainability for autonomous driving decisions and highlights
the approach of using post-hoc explanation visualizations.

Limitations and Future Work. In general, the features correspond-
ing to an emotion that the model explicitly finds important might
only partly match with the features that the driver perceives as
most influential in a particular situation. For example, features or
modalities not captured in the dataset, like in-car volume or voice
intensity, might be more expressive in certain situations. As the
driver is exposed to a vast range of modalities in the environmen-
tal context (e.g. cognitive workload [21] or biased expectations
towards a reactive AI-based emotion feedback system [22]), the
interpretation of emotion for a limited number of features might
only reflect the emotional reasoning to a certain extent. For the
model to learn long-term dependencies (e.g., 5 minutes), the input
window must be at least this specific size. As a result, the number
of samples in the training and test set decreases. This poses a prob-
lem in small-scale experimental datasets as, in our case, the mean
duration of a participant’s driving session is only 10 minutes. Thus,
large input windows cannot be chosen due to the relatively short

driving sessions, which is why we set a time window of 20 seconds.
Furthermore, the interpretable feature maps we extract only offer a
local per-sample explanation concerning an emotion. Thus, these
representations allow no implications about global feature impor-
tance over the whole data set. We focused on emotion classification
based on contextual driving data in this work. However, for future
work, one might also consider physiological data of the participants
or even further in-car modalities, like in-car volume levels.

6 CONCLUSION
We introduced ITER, a model that classifies drivers’ emotions based
on contextual driving data represented as multivariate time-series.
We showed that by considering time as a variable in the emotion
recognition system, we are able to interpret the importance of in-
dividual feature instances with respect to a specific classification
result. Hereby, explainability is visualized by saliency maps that are
created with a gradient-based and a forward-score-based method.
Being able to explain the model’s classification decision by infer-
ring the importance of certain feature aspects might be crucial to
help humans understand the model’s reasoning process. In driving
scenarios, empathic car interfaces and emotional routing might be
suitable applications for such a system. In general, being able to
interpret model decisions might help to better understand the input
data by analyzing conspicuities within a sample.
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Table 2: List of available features to predict drivers emotions.

Context Feature Example Values

vehicle trajectory vehicle_speed 2.255133
vehicle_acceleration -0.15.

weather feeltemp_outside 13.0
windspeed 5.6
cloud_coverage 76
weather_term ‘clear’

traffic trafficflow_reducedspeed 7.295495
freeflow_speed 115.0

road road_type ‘residential’
max_speed 30.0
n_lanes 2

in-vehicle facial expression ‘surprise’

personal daytime ‘afternoon’
age 21
before_emotion ‘happiness’

Neural Network Specification. The time-series input to the net-
work has the dimension 𝐹0 ×𝑇0, where 𝐹0 is the feature dimension,
and 𝑇0 is the time dimension. In our case, 𝑇0 is set to a temporal
window size of 20, and 𝐹0 is equivalent to 14 features. The choice of
𝐹0 depends on the context features that are recorded in the dataset,
while the choice of 𝑇0 has been determined experimentally (this
is further justified in section 5). The first stage of the architecture
consists of 𝑁 parallel 2D convolution layers with different kernel
sizes 1 × 𝑘𝑛 with 𝑛 ∈ {1, ..., 𝑁 }. 𝑘𝑛 represents the respective kernel
size along the time dimension, while the first dimension of the
kernel is set to 1 to retain the individual feature importance for
a classification decision. Same padding and a stride size of 1 are
used to preserve the original input dimension of 𝐹0 ×𝑇0 and allow
the concatenation of feature maps resulting from different kernel
sizes. After concatenating the number of 𝑑𝑓 feature maps resulting
from the convolution layers along the third dimension, a batch nor-
malization, ReLU, and dropout layer are applied onto the feature
maps. We again repeat the aforementioned process of parallel 2D
convolution layers with the same kernel sizes 1 × 𝑘𝑛 with respect
to the 𝑑𝑓 feature maps. By using same padding and a stride size
of 2, the feature map sizes result in 𝐹0 ×𝑇1. In the next stage, we
apply a 2D convolution with the kernel sizes 1 × 1 and 1 × 2, while
using same padding and a stride of 1. The resulting feature maps
are again concatenated and reshaped to 𝐹1 ×𝑇1.

The second part of the architecture is defined by a 1D convolution
layer, a dense layer as well as the final dense classification layer
with a softmax activation function. More specifically, we define a
1D convolution with the kernel size 𝑘1𝐷 that is used to account for
dependencies of features between different time steps. The resulting
𝐹2 × 𝑇1 feature map is flattened in the last stage to be a suitable
input to the following dense layer of size 1 × 𝐹2. As the last step,
we define a dense classification layer for the number of classes 𝑛𝑐𝑙 .

Saliency Map Calculation. The feature maps that we generate are
saliency maps that help the user understand the model’s decisions.

The activation feature maps that are extracted from the last 2D con-
volution layers represent a visualization of the network’s attention
towards specific features over time to a particular classification
decision.

On the one hand, we create activation feature maps based on
the Grad-CAM method introduced by [34]. The weight 𝛼𝑐

𝑘
of each

feature map 𝐴𝑘 is determined by

𝛼𝑐
𝑘
=

1
𝐹𝑘𝑇𝑘

𝐹𝑘∑︁
𝑖=1

𝑇𝑘∑︁
𝑗=1

𝜕𝑦𝑐

𝜕𝐴𝑘
𝑖 𝑗

, (1)

where we calculate the gradients of the class 𝑦𝑐 with respect to the
activations 𝐴𝑘

𝑖 𝑗
and average over the number of time instances of

all features. A high value of 𝛼𝑐
𝑘
would indicate a strong contribu-

tion of the individual instances in the feature map 𝐴𝑘 towards the
classification of 𝑦𝑐 . We sum over the weighted activation maps and
apply a ReLU function in order to capture only positive influence
with respect to class 𝑦𝑐 .

On the other hand, we use the Score-CAM method from [36]
which deals with possible shortcomings of gradient-based methods
like the vanishing gradient problem. The approach does not rely
on the gradient-based weights by determining the activation map
weighting through the forward pass scores concerning the target
class. Therefore, we first have to calculate the masked inputs 𝐼𝑘

𝑀
defined by

𝐼𝑘𝑀 = 𝐼 ◦𝑀𝑘 , (2)
where 𝐼 represents the multivariate time window input and 𝑀𝑘

defines activation maps 𝐴𝑘 that are upsampled to the input and
normalized. The masked inputs are then fed into the model to
determine their classification score 𝛽𝑐

𝑘
for class 𝑦𝑐 . The higher the

classification score of a masked input 𝐼𝑘
𝑀
, the stronger 𝐴𝑘 gets

weighted. Like Grad-Cam, a ReLU function is applied to the sum
over the weighted activation maps 𝛽𝑐

𝑘
𝐴𝑘 .

Evaluation. For comparison, we provide the confusion matrix
of VEmotion and qualitative results that display Grad-CAM and
Score-CAM visualizations.

Figure 5: 10-fold cross-validation results of VEmotion [6].
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Figure 6: The rows contain the input and feature maps corresponding to an emotion sample. The first column corresponds to
the normalized input sample, the second column to the feature maps resulting from the Grad-CAM approach and the third
column to the feature map based on the Score-CAM approach.
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