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Figure 1:We present VEmotion, a new virtual emotion sensor embedded into a smartphone app that fuses an extensive variety
of contextual information like vehicle- and traffic dynamics, road characterization, environmental weather, and in-vehicle
context.
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ABSTRACT
Detecting emotions while driving remains a challenge in Human-
Computer Interaction. Current methods to estimate the dri-
ver’s experienced emotions use physiological sensing (e.g., skin-
conductance, electroencephalography), speech, or facial expres-
sions. However, drivers need to use wearable devices, perform
explicit voice interaction, or require robust facial expressiveness.
We present VEmotion (Virtual Emotion Sensor), a novel method
to predict driver emotions in an unobtrusive way using contextual
smartphone data. VEmotion analyzes information including traffic
dynamics, environmental factors, in-vehicle context, and road char-
acteristics to implicitly classify driver emotions. We demonstrate
the applicability in a real-world driving study (N = 12) to evaluate

https://doi.org/10.1145/3472749.3474775


UIST ’21, October 10–14, 2021, Virtual Event, USA Bethge et al.

the emotion prediction performance. Our results show that VEmo-
tion outperforms facial expressions by 29% in a person-dependent
classification and by 8.5% in a person-independent classification.
We discuss how VEmotion enables empathic car interfaces to sense
the driver’s emotions and will provide in-situ interface adaptations
on-the-go.

CCS CONCEPTS
• Human-centered computing → Ubiquitous and mobile
computing; • Computing methodologies→ Machine learning.

KEYWORDS
driver emotion detection, mobile sensory system, contextual affec-
tive state prediction, machine learning
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1 INTRODUCTION
Driving can elicit many emotional and cognitive states. The experi-
ence of driving — a combination of how one feels before entering
the vehicle, the context of neighboring traffic, the behavior of other
road users, the car aesthetics, and one’s own driving style, among
other factors — induces a wide range of emotions in drivers [48].
There is a growing interest in developing automotive user interfaces
that allow for implicit and explicit interactions that are aware of
how the driver is feeling [4]. This rests on the viability of the system
in accurately estimating the driver’s emotions, a field referred to as
affective or empathic computing [7, 39].

Recent breakthroughs in ambient ubiquitous sensing [33] allow
in-the-wild driver data, including real-world driving context, to in-
form emotion classification models. In principle, this could allow for
empathic car interfaces [4] that could plan routes to invoke specific
emotions, raise the user’s engagement when detecting boredom by
playing the user’s preferred music, or mitigate undesirable driving
styles that result from negative emotions (e.g., anger, sadness). The
viability of such interfaces rests on the accurate, robust, and real-
time classification of a driver’s emotions. This remains an ongoing
research challenge.

What are emotions and how do we measure them? Ekman has
proposed six basic and pancultural emotions that can be inferred
from one’s facial features [15, 16]. This has motivated the develop-
ment of computer vision for recognizing emotions from camera-
captured facial expressions [2]. Besides this, implicit physiological
activity could also be relied on for estimating the user’s emotion.
Some modalities include electroencephalography [1], electrodermal
activity [8], or heart rate variability [40]. Nonetheless, physiological
sensing often requires user contact with the measurement sensor,
which impacts the user acceptance [25] and the overall driving ex-
perience. In comparison, remote cameras are less intrusive [31, 38].
For this reason, state-of-the-art algorithms for facial expression
recognition are now commercially and widely available — such as

the Affectiva SDK [34], or the Microsoft Azure face detection API1.
These systems have been deployed on a large scale and are utilized
to measure drivers’ emotions and stress [9, 23]. The correlation
between facial expressions and their underlying emotion can vary
across individuals [45], where the emotion detection quality de-
pends on the driver’s facial expressiveness, brightness levels, and
the driver’s willingness to be video recorded. Here, previous re-
search suggests that the individual driving style and driving perfor-
mance are indicative of the driver’s experienced emotions [22, 35].
With this in mind, we investigate whether the analysis of driving
styles and driving-related information can be used to predict dri-
ver emotions? This is a counter-intuitive proposition, given that
we are sensing driving information instead of sensing the driver
themselves.

This paper presents VEmotion, a smartphone system that uses
internal sensors only to measure driving information and estimate
the perceived emotions in real-time. VEmotion analyzes the user’s
driving behavior through the car’s surroundings variables including
speed, weather, road types, and traffic flow. In contrast to previous
emotion assessment modalities, VEmotion relies only on the con-
textual data from the vehicle that does not require modifying the
car itself. To elaborate, we recorded high-dimensional contextual
driving data on different routes and derived common environmen-
tal influences on emotional states. We collected data with VEmotion
in a user study with twelve participants and evaluated its classifica-
tion accuracy. Our results show that vehicle speed, traffic flow, and
weather terms are assigned the highest feature importance from
all recorded context variables. We conclude that VEmotion is an
appropriate and generalizable approach for predicting the driver’s
emotions, achieving up to 72.4% accuracy in real-world driving
scenarios.

CONTRIBUTION STATEMENT
Our workmakes four contributions: (1)We present VEmotion, a mo-
bile and personal computing software that predicts driver emotions
based on contextual driving data. (2) We report an in-the-wild study
and demonstrate that emotion recognition from camera-captured
facial expressions can be improved by 28.5% using VEmotion. (3)
We provide a machine learning-based processing pipeline that ana-
lyzes the relative importance of the various contextual features and,
hence, their respective contribution to emotion prediction accuracy.
(4) Finally, we discuss how VEmotion enables seamless emotion
prediction for future empathic car interfaces. Altogether, this paper
demonstrates that contextual measurements can support emotion
state classification, not only of the user themselves but also of con-
textual variables that invoke the state (e.g., weather, traffic flow) or
result from the vehicle state (e.g., car speed).

2 RELATEDWORK
This section presents previous work about emotion assessment,
detection of emotions in driving scenarios, and the use of emotions
in interactive systems.

1https://azure.microsoft.com/services/cognitive-services/face, last access 2021-04-07
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2.1 Emotion Assessment
There is a tendency in computer science to treat affect and emo-
tion as the same phenomenon inferring and understanding human
emotion primarily through the expression of physiological signals
such as facial expression, gait, or blood conductivity [52]. Although
they are different, necessary distinctions occur. Affect has been
described by Deborah Gould [20] as “non-conscious and unnamed,
but nonetheless registered, experiences of bodily energy and in-
tensity that arise in response to stimuli” and thereby describes a
“compound phenomenon variously consisting of evaluative, phys-
iological, phenomenological, expressive, behavioral, and mental
components” [52]. Emotion is regarded as “what from the potential
of [affective] bodily intensities gets actualized or concretized in
the flow of living” [20]. Treating Stark and Hoye [52] as a starting
point, our current work is physiological and adopts a motivational
model of emotion. We address criticism against this conflation of
our chosen approach in the discussion section.

Measuring the user’s emotions is a compelling topic that has been
addressed by previous research. Picard coined the term Affective
Computing, envisioning computers to express or sense emotions to
provide a computerized interface that mimics human-like capabili-
ties [39]. Modern user interfaces, such as voice or speech interfaces,
benefit from understanding the user’s currently perceived emotions
or cognitive states and can adjust their interface according to the
user’s mood [54]. However, investigating robust modalities that
sense emotions in real-time is still an ongoing research field.

Early work looked at facial expressions as a marker for perceived
emotions. Ekman [14] and Ekman and Rosenberg [18] concluded
that a connection between emotions and facial expressions exists.
Numerous frameworks exist which can recognize emotional states
using facial expressions.

However, facial expressions are considered an individual prop-
erty that is different across the user’s culture [43] or their gen-
der [17]. Hence, facial expressions for interactive applications re-
quire users to calibrate towards their individual facial expressions.
Kosch et al. [27] investigated if the detection of facial expressions
via computer vision is feasible for mobile in-the-wild studies. They
find that a re-calibration of the individual facial expressions on
a per-user basis increases the correctness of emotions detected
through facial expressions by 33%. However, detecting facial ex-
pressions using computer vision requires installing cameras and
can compromise the user’s privacy. External factors, such as illu-
mination, can influence the quality of facial expression detection.
Wearable sensors that provide a direct assessment of the user’s
physiological states can be used to infer the perceived emotions.
Other wearable sensors exploited alternative physiological sensing
modalities, such as electrodermal activity, heart rate, muscle ten-
sion, breathing rate, and electroencephalography [28]. However,
wearable devices must provide a sufficient utility to the user to
justify the user’s effort of using the wearable sensor [59]. Also, the
obtained physiological signals require a certain quality level and
the suitable measurement modality for the right job to provide a
meaningful assessment over the emotions [12].

2.2 Detecting Emotions while Driving
Facial expressions have a long tradition as an indicator for the ex-
pressed emotions [14]. Typical facial expressions include smiling
or frowning as well as head gestures, such as nods and tilts. The
detection of facial expressions requires an additional camera in
the driver’s cabin, including RGB cameras [9, 31, 38], infrared cam-
eras [19] or thermal cameras [26]. Physiological sensing utilizes the
driver’s direct bodily responses to draw conclusions about the emo-
tional states. Several physiological sensing modalities, such as heart
rate, electrodermal activity, and electroencephalography [13, 62],
are indicative of the driver’s perceived emotions. However, to mea-
sure such physiological signals, sensors require direct contact with
the user while driving (e.g., electrodermal activity sensor attached
to the driver’s hand). This can impact the driving experience and
usability negatively [63]. In-car speech interfaces have been in-
vestigated as a modality to measure the driver’s emotions. The
way the driver talks to the voice assistant or co-drivers can indi-
cate the user’s perceived emotions. A variety of studies focus on
paralinguistic features and how drivers are verbally interacting
with the environment [21, 44, 46] by analyzing the sound’s loud-
ness, pitch, and spectral features [62]. However, the driver needs
to communicate with an entity in the car while driving to enable
robust detection of emotions which is not feasible during stressful
or cognitively demanding driving scenarios.

Previous research hypothesizes that the driving behavior, style,
and the driver’s context are indicative of the currently perceived
emotions [35]. Here, behavioral characteristics are viewed as emo-
tional markers. For example, the grip strength applied on the steer-
ing wheel varies with the driver’s emotional states [30, 36, 49].
Other factors include the interaction with the gas and brake ped-
als [32] as well as changes in body posture using pressure sen-
sors [53]. Similarly, the driver’s context and driving behavior are
reliable factors to predict emotions. Navon et al. investigated how a
driver’s driving style is influenced under different emotions, finding
that maladaptive driving styles are closely related with participants
who have difficulties in emotion regulation and forgivingness [35].
Hancock et al. [22] show that negative emotions impact driver
performance and driving styles, impacting the number of lane ex-
cursions and lateral control of the car.

Based on previous work, we expect correlations between the
driving style and driver emotions. However, developers and re-
searchers must access the car’s sensor layer, which is often kept
confidential, to infer the user’s driving style. Standards for obtain-
ing these data streams exist (e.g., OBD II) but are limited to specific
measures, such as acceleration, braking, or steering behavior [50].
Furthermore, these standards have to be implemented by the in-
dividual car manufacturers and often miss environmental factors,
including road context variables. So far, previous research has in-
formed how emotions can be sensed in-car interfaces. Sensing the
driver’s emotions by utilizing the driver’s driving context and be-
havior without modifying the user’s car on the go has not been
studied so far. We close this gap by presenting a study that classifies
the driver’s emotions by solely analyzing the context and driving
behavior.
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2.3 Considering Emotion Expressiveness in
Real Driving Environments

Detecting emotions in the wild is a challenging task. From a ma-
chine learning perspective, most recognition models are trained
with data from a constrained environment (e.g., driving simula-
tors) and perform poorly in unconstrained scenarios. To evaluate
our contribution to existing work in driver emotion recognition
(e.g., with other modalities), the most recent systematic literature
survey by Zepf et al. [62] provides a detailed understanding. The
survey systematically reviews literature back to 2002 and identifies
63 papers on this topic. Out of 63 identified articles in the survey,
only 19 papers measure emotions in natural, non-simulated set-
tings (i.e., not induced or acted). Looking at the expressed emotion
categories of the 19 papers, 16 papers were measuring stress while
three papers were measuring emotions. One of these papers was
predicting aggressive driving behavior without taking emotional
states into account [24]. Another one used electroencephalogra-
phy and electrodermal activity to predict concentration, tension,
tiredness, and relaxation [41]. Finally, Riener et al. [42] inferred
arousal states using electrocardiography and GPS data. Contrary to
related work, our approach does not require modifying the user’s
car and utilizes only smartphone sensors to determine the user’s
driving context and behavior, hence implying the user’s perceived
emotions. We present the system and classification pipeline in the
following section.

3 VEMOTION
In this section, we present VEmotion, a system that captures the
driver’s contextual driving data from the smartphone alone. We
present the software architecture and the measures of our imple-
mentation in the following.

3.1 System Architecture
We implemented a smartphone app that captures contextual smart-
phone data to train a classifier that predicts the driver’s emotions.
We perform a layered approach of extracting relevant context in-
formation to learn as much as possible from the driver’s driving
context using a minimum set of input streams. The selected fea-
tures are based on Braun et al. work [5] where driving behavior,
traffic, vehicle performance, and environmental factors are relevant.
We filtered the variables based on the following requirements: (1)
on-device computation without accessing the vehicle itself, (2) no
direct user interaction, and (3) non-critical consumption of device
resources. We capture the smartphones’ fused sensory data and
use it as an input for a machine learning predictor. Figure 2 pro-
vides an overview of the VEmotion system architecture. VEmotion
utilizes the speed of the vehicle, current weather, traffic context,
road context using GPS data, and the driver’s facial expressions
along a perceived emotion baseline to train a predictive classifier. A
prototype is developed as an iOS app, in which location-based data
is sensed in a 1Hz (Hertz) interval, whereas the video produces
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Figure 2: Overview of the VEmotion system architecture. We record contextual data (e.g., weather, road type, traffic flow) and
the driver’s facial expressions while driving. We fuse the collected data and use it as an input for a machine learning predictor
that predicts the driver’s emotions. The audio stream is used to detect the baseline emotion in our study experiment. Facial
expressions can be included as a feature in VEmotion based on individual privacy policies and is therefore depicted as a dashed
line. The audio stream input analyzed via a speech-text-engine is used to extract the label for our system and is not included
as an input feature to the machine learning engine.
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approximately 30 frames per second. In the following, we present
the features and data that are recorded by VEmotion.

3.1.1 GPS Sensor: Vehicle Dynamics . We interpolate the
speed of the vehicle (v) between two consecutive GPS waypoints
((lat1, lonд1), (lat2, lonд2)) and the time between t via the Haversine
formula [58]. We also calculated the vehicle’s acceleration by com-
puting the change in velocity divided by the time between using
two consecutive vehicle speed measurements.

3.1.2 GPS Sensor: Weather. We request weather information
of each incoming GPS coordinate from the Microsoft Azure
Maps API2 to reflect the weather context conditions in real-time.
Thereby, we include the following weather conditions: weather de-
scription called ‘weather_term’ (e.g., ‘sunny’), the approximated
outside-temperature ‘feeltemp_outside’ (in ◦C), cloud coverage
‘cloud_coverage’ (in %), and wind speed ‘windspeed’ (in km/h).

3.1.3 GPS Sensor: Trafficflow. We also include the traffic flow in
VEmotion by providing information about the speeds and travel
times of the road fragment closest to the given coordinates using
the Microsoft Maps Traffic Flow API. Thereby, for each GPS point
we include the variable ‘freeflow_speed’, which is the speed of traffic
expected under ideal conditions. The freeflow speed can be different
from the maximum speed limit of the road, for example, in case nar-
row roads force driver to slow down. To account for slow-moving
traffic and jams, we define a feature called ‘trafficflow_reducedspeed’.
The reduced speed of the traffic flow is calculated by the
freeflow speed on the road freeflow_speed(lat , lonд) minus the ac-
tual traffic flow speed on this segment current_speed(lat , lonд):
trafficflow_reducedspeed(lat , lonд) = freeflow_speed(lat , lonд) −
current_speed(lat , lonд) measured in km/h.

3.1.4 GPS Sensor: Road Type. We extract the nearest roads from
OpenStreetMap3 via reverse geocoding to detect the surrounding in-
frastructure for every GPS coordinate. We download a 200m × 200m
high-definition map of the current GPS coordinate and perform a
map matching by calculating the euclidean distance of each node
in the map to the current GPS coordinate and select the road node
object that is the closest. We thereby extract the following features:
road-type (e.g., ‘highway’), maximum speed on the current road (in
km/h), and the number of available lanes on the current road.

3.1.5 Front-Facing Smartphone Camera: Facial Expressions. We
decided to include and evaluate the basic emotions captured
through facial expressions [14] into our classification pipeline. The
facial expression does not represent our label for predicting the
emotions of the driver but is rather a way to have more inside-
view information. The smartphone app obtains an image stream
with 30 frames per second from the driver-facing camera and cuts
it into frames to assess the driver’s facial expressions. Up to 10
frames per second are sent via a cloud platform to be analyzed
for facial expression features. Here, the Microsoft Face Recogni-
tion API is used to detect facial expressions that indicate specific
emotions. The API returns confidences for eight basis emotions
(‘anger’, ‘contempt’, ‘disgust’, ‘fear’, ‘happiness’, ‘neutral’, ‘sadness’,
‘surprise’). No emotion value is recorded if no faces are detected
2https://azure.microsoft.com/services/azure-maps, last access 2021-04-07
3https://nominatim.openstreetmap.org/ui/search.html, last access 2021-04-07

(e.g., due to occlusion or shaky video stream). To have distinct emo-
tions corresponding to a GPS coordinate rather than confidences of
the eight basic emotions, we take the emotion with the maximum
confidence and call this variable facial_expression. The validity of
different cloud-based, commercial facial expression SDKs has been
researched by Yang et al. [60] using a multitude of data sets such as
ADFES [56], RaFD [29], WSEFEP [37]. The overall emotion recog-
nition accuracy of Microsoft Azure is higher 84.7% compared to
the 67% accuracy from the Affectiva SDK, especially ‘angry’, ‘sad’,
and ‘happy’ facial expressions can be predicted more confidently
with Microsoft Azure [60].

3.1.6 Per-Ride User-Input: Personal Context. To include more
subject-variant features in our analysis, we selected ‘daytime’ of
the ride, ‘age’ of the driver, and felt emotions before the ride (‘be-
fore_emotion’) as variables to our system. Their values remain con-
stant over the driving time.

3.2 Synchronizing Data Streams: Sensor Fusion
In the system’s sensor fusion module, we make sure that all in-
coming sensor streams from GPS and camera are aligned along the
time- and spatial dimensions. The GPS module exports its latitude
and longitude signals together with the current timestamp of the
sensor system in a GPX-XML format. The frontal face video stream
is divided into individual frames and attached metadata about their
time-occurrence based on the camera’s frames per second. The
output emotion categories are merged with the GPS sensor stream
by the timestamp values after analyzing the individual frames and
GPS-derived information. Table 1 shows the used features with
example values.

Table 1: List of available features to predict emotions on the
ride.

Context Feature Example Values

vehicle trajectory vehicle_speed 2.255133
vehicle_acceleration -0.15.

weather feeltemp_outside 13.0
windspeed 5.6
cloud_coverage 76
weather_term ‘clear’

traffic trafficflow_reducedspeed 7.295495
freeflow_speed 115.0

road road_type ‘residential’
max_speed 30.0
n_lanes 2

in-vehicle facial expression ‘surprise’

personal daytime ‘afternoon’
age 21
before_emotion ‘happiness’

We performed several steps to clean the data before training a
suitable context-emotion classifier. The labeling process is defined
in the user study section 4. We excluded all observations, where

https://azure.microsoft.com/services/azure-maps
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the ‘expressed_emotion’ label is outside our specified emotion cat-
egories (e.g., one participant P11 once labeled he is ‘stressed’).
The string-based features are encoded into integer categories
(‘before_emotion’, ‘daytime’, ‘weather_term’, ‘road_type’ and ‘fa-
cial_expression’) for appropriate use in the classification algorithm.
Next, we cleaned the data of missing values by setting the default
number of lanes ‘n_lanes’ to 1 and set missing entry values for
‘max_speed’ to 0. We selected a Random Forest Ensemble Learning
as a default classifier based on a 10-fold grid-search cross-validation
(using Support Vector Machines, KNeighbors, Decision Tree, Ad-
aboost, and Random Forest classifier from scikit-learn with default
parameters), in which the Random Forest achieved the highest av-
erage F1 score. The type of modeling procedure (person-dependent
and person-independent) is explained in detail in the sections 5.3
and 5.5.

We also developed a real-time prediction app of VEmotion to
classify emotions on unknown roads based on the learned classifier
in which the mean emotion inference took 1.36s (SD: 0.246, min:
0.962, max: 1.996) in a 30-minute test ride.

4 USER STUDY
We conduct a user study to understand the impact of the VEmotion’s
contextual data on emotion prediction.

4.1 Apparatus and Method
We built a vehicle-usable iOS app that records the individual GPS
and video stream and computes the variables described in Section
3 continuously during the ride4. We asked the participants to use
this app the next time they used their personal car to ride and at-
tach their phone to the windscreen. We recorded the daytime and
asked the participant about their currently perceived emotion at
the beginning of the ride. To collect a baseline of the participant’s
own interpretation of emotional states during the ride, we trigger
a beep tone every 60 seconds for the participants to verbally pro-
vide their currently perceived emotions. We designed this emotion
probing in correspondence to the in-situ categorical emotion re-
sponse (CER) rating for collecting data on emotional experiences in
vehicles [11]. Participants were instructed about the set of available
emotions before starting the experiment (i.e., the basic emotions
after Ekman [14]). The verbally expressed emotion was recorded
while driving and is analyzed after the driving scenarios with a
speech-to-text algorithm. As this procedure requires the passenger
to talk during the ride and can be a distraction from first-order
driving tasks, in a pre-study (N = 5) we optimized the time inter-
val not to be annoying, ensure safety, and simultaneously cover
the felt emotions appropriately. A post-hoc driving questionnaire
showed that 9/12 participants were not bothered by the beep. The
mean time-to-beep-response was 1.8 seconds. For an in-the-wild
system that uses our architecture, the ground truth emotion as-
sessment will not be required, and therefore, the system will not
interact with the driver. A printout of the basic emotions was given
to the participants before the start of the experiment. After the
ride, the participant answers several subjective questions, including
remarkable incidents.

4Ethical approval was granted by the institutional review board of the university
department

4.2 Procedure
Twelve participants were invited through a mailing list from a pool
of colleagues willing to participate in research studies. They were
asked to download our iOS app beforehand and were equipped with
a windshield smartphone retainer. The participants were asked be-
fore their next ride to call the study instructor via a remote call.
In this call, the participants were asked about their demographics,
frequency of driving, and feelings before the ride. Then we gave an
introduction to our app. The participants were then asked to hang
up, start the app recording, and drive freely to their chosen destina-
tion and after the ride to save the recordings and call the instructor.
The instructor asked the participants about notable incidents while
driving, emotions while and after driving.

4.3 Participants
We recruited 12 participants (eight self-identified as male, two self-
identified as female) with an average age of 27 years (SD = 4.73).
Six participants occasionally drive (i.e., less than 10,000 kilometers
per year), where three participants drive moderate distances (i.e.,
between 10,000 and 20,000 kilometers per year), and three partici-
pants drive more frequently (i.e., more than 20,000 kilometers per
year). The mean duration of the rides is 16minutes ( SD = 11, min=7,
max=52). The road type changed on average 7.9 times per ride. Par-
ticipants expressed on average 4.41 distinct emotions during their
ride (the duration between different expressed emotions across all
users was 2 minutes 43 (SD=3 minutes 59).

5 RESULTS
We analyze the prediction performance of driver’s emotions us-
ing the data captured by VEmotion. First, we evaluate the relative
importance of single features of the data set collected by VEmo-
tion. Then, we investigate the classification accuracy for emo-
tion recognition based on facial expressions alone. Finally, we
performed the following model evaluations: (1) a Leave-One-of-10-
Road-Segments-Out cross-validation, (2) a participant-dependent
Leave-One-of-10-Road-Segments-Out cross-validation, and (3) a
Leave-One-Participant-Out cross-validation for evaluating VEmo-
tion on unseen participants (i.e., participant-independent evalua-
tion).

5.1 Relevant Features for Predicting Emotions
We collected 8986 instances of labeled data, namely a GPS location
with a ground-truth label of the user’s self-reported emotion. This
corresponds to 1.1 seconds of driving depending on data validity,
such as GPS fixes. Overall, 5780 were labeled as ‘neutral’ (64%),
2839 as ‘happy’ (32%), 177 as ‘surprise’ (2%), 130 as ‘angry’(1%),
and 60 as ‘disgust’(< 1%). We start by investigating how decisive
each feature was for creating a classification model. For this, we
extracted the feature importance of the context variables, provided
by VEmotion, in a leave-one-participant-out situation in Figure 3.
As we employed a Random Forest classifier for emotion prediction,
feature importance is measured as the popular mean decrease in im-
purity — this is defined as the total decrease in node Gini-impurity
(weighted by the probability of reaching that node), averaged over
all trees of the ensemble [6].

Of the context variables, ‘vehicle_speed’ was ranked highest
in terms of feature importance. This might be because ‘happy’
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Figure 3: Feature importances measured by the mean decrease of Gini-impurity for the Leave-One-Participant-Out cross-
validation.

emotions are often reported in unhindered speed scenarios. In con-
trast, related research [61] report higher negative emotions (i.e.,
‘anger’ and ‘fear’) during unforeseen traffic incidents (e.g., high
traffic densities or red light series) that require high cognitive de-
mands. The information extracted by the traffic variables (‘traf-
ficflow_reducedspeed’ and ‘freeflow_speed’) is assigned the lowest
feature importances overall, which might be due to the vehicle tra-
jectory features (acceleration and speed) working as proxy variables
for unhindered traffic rides. Interestingly ‘weather’ and ‘daytime’
were assigned a medium level of feature importance. These environ-
mental variables have been observed to impact emotional states in
related psychological research [10, 61]. Related research has weakly
associated negative emotional states to ‘temperature’ and positive
emotions to ‘sunlight’. However, weather influences tend to be
highly dependent on person and age, which are additional context
variables in VEmotion. Contrary to our expectations, the emotion
reported before the ride was not assigned a very high feature im-
portance, which may be due to mood changes when driving and
unforeseen traffic incidents. The facial expressions captured by the
frontal face camera have low feature importance. In contrast, all
other recorded context inputs have medium-level importance. This
underlines the usefulness of personal- and environmental input
based on GPS location.

In a subsequent analysis, we evaluated the learned feature im-
portances assigned conditional to the emotional class labels. We
observe that ‘cloud_coverage’ and ‘max_speed’ information con-
tribute highly to ‘happy’ emotions. Interestingly, ‘freeflow_speed’
has high feature importance conditioned on ‘disgust’ emotional
states.

5.2 Validity of Facial Expressions
We analyzed the validity of ‘facial expressions’ as the sole indica-
tor for the driver’s emotions. We observe that ‘facial expressions’

predict five distinct emotional categories on the complete data
set (‘neutral’, ‘happiness’, ‘surprise’, ‘contempt’, ‘sadness’, and ‘un-
known’ if no face is detected). The emotions reported by partici-
pants on the ride are ‘angry’, ‘disgust’, ‘happiness’, ‘neutral’, and
‘surprise’, and thereby a subset of the facial expressions detected.
Figure 4a shows the output of the facial expression engine and
the self-reported emotion in our data set. The confusion matrix
indicates that the facial expression engine detects many ‘neutral’
emotions (which are, in most cases, the true self-reported emotions).
However, the self-reported emotion is often not correctly detected:
60% of ‘surprised’ emotions are predicted as ‘neutral’ emotions. At
the same time, 82% of ‘happy’ and 98% of ‘disgust’ emotions are pre-
dicted as being ‘neutral’. To conclude, the facial expression engine
often yields a ‘neutral’ emotion class, ignoring and misclassifying
heavily other felt emotions of the driver.

5.3 Leave-One-of-10-Road-Segments-Out
Cross-Validation

Emotion recognition from ‘facial expressions’ alone is limited. To
overcome this, we trained a Random Forest classifier (random state
= 0, n_estimators = 50, max_features= loд25) on the whole data
set in the study, which included ‘context variables’. We performed
unshuffled cross-validation with 10-folds from all participants by
segmenting the participant data into ten distinct consecutive folds
(time-dependent road segments). Thereby, we construct a training
set from nine training folds and one test set consisting of the remain-
ing folds. This avoids a common constraint posted by a traditional
10-fold shuffled cross-validation evaluation since neighboring sam-
ples can be present in both training and test sets, resulting in trivial
classification models. We term our evaluation approach ‘Leave-
One-of-10-Road-Segments-Out cross-validation’, as this provides
a better picture of the potential performance and robustness for

5The hyperparameters are found using a 10-fold hyperparameter tuning grid search.
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Figure 4: Comparison between facial expression output vs. VEmotion in predicting self-reported emotions on the road. The
values of the confusion matrices are normalized on the true emotion class occurrences. The confusion matrix have different
sizes as the facial expression engine falsely outputs a larger set of emotions (indicated by the blue vertical line). (a): Direct out-
put of the facial expressions fromMicrosoft Azure. The detection accuracy of the self-reported emotions is 55.57%. (b): 10-fold
cross-validation on the participants’ unshuffled data using VEmotion accessing contextual data (no facial expression features
included) trained with a Random Forest classifier trained with an accuracy of 71.70%. VEmotion achieves an unweighted aver-
age of the class specific recalls of 0.41 in (a) vs. a worse close-to-chance 0.18 when using facial expressions alone (b).

evaluating the classification performance. Furthermore, we believe
that realistic data sets will contain relatively few, hence insufficient,
‘angry’ and ‘disgust’ emotion categories for model learning. Due to
the imbalance of emotional classes that may be apparent in specific
rides, we set the class weight of observations to ‘balance’. This
means that the Random Forest in VEmotion uses the values of the
emotion class to automatically adjust weights inversely propor-
tional to class frequencies in the training folds. Hence, we calculate
the weighted average F1 score over all emotion classes, which is de-
fined as the harmonic mean of precision and recall, as an evaluation
measure of classification performance.

VEmotion prediction performance of self-reported emotions in
a 10-fold cross-validation on unseen ride segments is shown in
Figure 4b. The overall accuracy of emotions is 71.70%. In other
words, it is 29% better than relying on the ‘facial expression’ engine
alone. We validated the facial expression engine by using other com-
mon facial expression classifier systems. We explored and applied
a locally computable EmoPy trained on FER 2013 dataset [55] and
AWS Emotion Recognition [47] to our data showing similar, sub-
par results (predicting neutral/calm states is prevalent, accuracy:
0.55 and 0.07). VEmotion achieves an weighted average F1 score
of 71.30 (SD: 0.0713) across all emotional classes and outperforms
the facial-expression-only system by 20 percentage points. We also
observe that VEmotion only predicts classes that are actually ex-
pressed during the ride. In contrast, the ‘facial expression’ engine
predicted contempt’ or ‘sad’ emotions. Furthermore, VEmotion

predicts 60% of ‘happy’ emotions vs. 6% using facial expressions
only by only losing 3%. of correct ‘neutral’ emotion predictions.
‘surprise’ emotions can be accurately predicted with 28%. In con-
trast, ‘angry’ and ‘disgust’ emotions cannot be properly detected by
VEmotion. The results indicate that contextual information can sig-
nificantly improve the classification of emotional states, especially
in detecting ‘surprise’ situations. VEmotion additionally discrimi-
nates better between ‘neutral’ and ‘happiness’ states of the driver.
This evaluation is based on a 10-fold cross-validation and has access
to training data of individual participants. We show that we can
learn a global system for recognizing emotions ‘on-the-go’ with
contextual and facial expressions. However, this comes at higher
computational costs of having access to all participants’ data and
learning a participant-independent classifier. If the system should
be used for uncalibrated modeling of a new driver’s emotions, we
perform an extensive evaluation in the next paragraph.

5.4 Participant-Dependent
Leave-One-of-10-Road-Segments-Out
Cross-Validation

Furthermore, we analyzed participant-dependent modeling using a
participant-dependent Leave-One-of-10-Road-Segments-Out cross-
validation. This means that we are training a participant-dependent
model and validating on a holdout set of the participant using a 10-
fold cross-validation scheme. The results are presented in Table 2.
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Table 2: Accuracy, precision, recall, and weighted F1 scores of the global 10-fold cross validation on unseen consecutive driv-
ing segments, aggregate of participant-dependent Leave-One-of-10-Road-Segments-Out cross validation, as well as leave-one-
participant-out cross-validation.

Leave-One-of-10-Road-Segments-Out
Cross-Validation

Participant-Dependent
Leave-One-of-10-Road-

Segments-Out
Cross-Validation

Leave-One-Participant-Out
Cross-Validation

Input Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

Facial Expressions .56 .57 .56 .51 .57 .66 .57 .56 .59 .63 .59 .54
VEmotion +
Facial Expressions

.72 1.0 .72 .72 .70 .86 .70 .73 .64 .58 .64 .57

VEmotion .72 1.0 .72 .71 .71 .89 .71 .73 .64 .56 .64 .56

5.5 Leave-One-Participant-Out
Cross-Validation

We evaluate the possibility of a general classification model using
all participant data except for one for training and using the last par-
ticipant for evaluation. Semantically, this approach learns a model
without knowing anything about the driver in advance and predicts
the drivers’ emotions independent from individual context emotion
preferences. As we have a more complex prediction problem by not
having learned from the held-out participant, we expect the overall
prediction to decrease. The results of the experiment are shown in
Table 2.

5.6 Comparison of Model Performances
Table 2 provides an overview of the prediction performance scores
for the different evaluation procedures based on VEmotion. The
Leave-One-of-10-Road-Segments-Out cross-validation approach,
which uses all data samples from all participants, yields 71.70%
accuracy. This is considerably higher than relying on ‘facial expres-
sions’ only, which achieves a mean accuracy of 55.58%. Looking
at the F1 score, weighted for the class labels, VEmotion achieves a
score of 0.7130 and 0.7164 with inclusion of facial expressions. In
the next step, we performed a 10-fold cross validation only based
on individual participants’ data and aggregate the results over all
participants (i.e., a participant-dependent Leave-One-of-10-Road-
Segments-Out cross-validation). Here, we observe a similar predic-
tion performance compared to the global model. VEmotion achieves
here an average accuracy of 70.67% which is approximate 1.03%.
smaller than in the global 10-fold cross-validation step. Also, the
weighted F1 score increased slightly to 0.7282.

In the participant-dependent cross-validation, we also observe
that the VEmotion without the variables from the ‘facial expression’
(VEmotion) engine has a marginally higher precision of 88.59 %
than VEmotion including facial expressions. This indicates that a
high fraction of emotions are predicted with a low false-positive
fraction. Looking at a much more challenging problem of predicting
emotion categories of unseen participants in the Leave-One-
Participant-Out scheme, the virtual sensor also outperforms the
other models with an F1 score of 0.56. The average accuracy of
VEmotion is 63.71%. This is less than the achieved accuracy in
the 10-fold cross-validation but remains a high-quality predictor
if no information about the user is known in this multiple class

output prediction. Since global and participant-dependent model-
ing of contextual emotions yield similar prediction qualities, we
conclude that it is computationally favorable to learn participant-
wise models over various rides, instead of learning global models
that require data exchange of all participants. This also ensures
that the inter-person and trip variety is sufficiently accounted for
in the training sample. We stress the fact of imbalanced emotion
classes that can only be acquired mainly through global data ac-
quisition. Thereby learning a solely participant-dependent model
puts the detection of emotions at a disadvantage that are not oc-
curring frequently (e.g., ‘surprise’, ‘angry’, ‘fear’, and ‘disgust’).
Hence, facial expressions that do not occur frequently can still
contribute to a robust model when collecting them from multiple
participants. Finally, our ‘in-the-wild study’ does not show a sig-
nificant benefit in including ‘facial expressions’ as features in our
classification model. Thus, we propose omitting ‘facial expressions’
in practice, which would further reduce computational costs. Fur-
thermore, facial expressions inhibit largely privacy concerns of
the end-users and might raise a feeling of video surveillance while
driving.

To answer the question of how many minutes of driving data
is needed for VEmotion to be accordingly calibrated to predict
emotions on the road with high accuracy,

5.7 Participant Fine-Tuning
We added a learning scheme below that illustrates how many min-
utes of driving data is needed for VEmotion to be calibrated for a
high accuracy emotion prediction on the road. We used a leave-
one-participant-out classifier to assess the emotion classification
performance by incorporating the first x minutes of additional par-
ticipants’ driving data and evaluated the performance of VEmotion
on the remaining driving data. Figure 5 presents the results of the
analysis. We found that the first five to ten minutes have to be cap-
tured to achieve a mean precision of over 75% across participants
due to the better discrimination of the classifier between neutral
and happy states during the first 10 minutes (F1 = .61). The drop
in accuracy and F1 after 10 minutes of training data is due to little
held out test data which increases the variability of the prediction
intervals. High precision of 80% and recall of 63.5% can be achieved
when fine-tuning the classifier on the first 14 minutes. However,
this requires the driver to label his perceived emotions 14 times,
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which may be annoying if done on every ride. We suspect our per-
formances to increase heavily if multiple rides with fine-tuning in
the first minutes are performed. Furthermore, VEmotion’s applica-
tion in practice would benefit from perceived emotion labeling in
any special scenario within the ride and not just during the first
minutes of driving.

6 DISCUSSION
Can we predict driver emotions based on driving context? To the
best of our knowledge, VEmotion provides the first in-car sen-
sor that combines implicit and non-intrusive measures to detect
the driver’s emotional states. In a user study with twelve partic-
ipants, we find the highest classification accuracy when training
a global model. We discuss the implications of our results in the
following.

6.1 Driving Context Implies Emotions
Previous work hypothesized that the observation of driving be-
havior can be indicative of driver emotions [22, 35]. Indeed, our
results show that certain features are predictive for driver emo-
tions. In analyzing the feature importances, we found that ‘vehicle
dynamics’, ‘weather’, and ‘traffic flow’ were highly predictive for
emotions. This implies that the designer of empathic car interfaces
should focus on the reliable measurement of these features when
assessing emotions is a critical task. These can be integrated into
existing emotion recognition engines or car navigation systems
that are already integrated into vehicles or smartphones. Our re-
sults demonstrate that different users share common emotional
categories influenced by the same contextual and environmen-
tal factors. In our real-world study, we notice a high imbalance
of self-reported emotions, as most people either respond to feel-
ing ‘happy’ or ‘neutral’ along their ride. This provides a challeng-
ing task for an appropriate data basis and proper classification
of ‘sad’, ‘fear’, or ‘disgust’ states which are often observed with
higher safety concerns [62]. These imbalanced emotion class dis-
tributions in the wild should therefore be extended in future data
acquisition.

6.2 Comparing the Classification Performance
between Facial Expressions and Driving
Behavior

We find a difference between the classification performance for
VEmotion, facial expressions, and a combination of VEmotion and
facial expressions. Our study shows that the use of facial expressions
alone results in the lowest classification accuracy compared to either
VEmotion or VEmotion in combination with facial expressions in a
real-world driving setting. Furthermore, our results show that not
all emotions can be reliably detected using facial expressions. This
includes the emotions ‘angry’, ‘surprise’, or ‘disgust’.

Our results show that the emotion class ‘neutral’ is predicted
most often by the facial expression engine. We suspect that the ‘neu-
tral’ emotion class occurs frequently due to the low facial expres-
siveness in driving scenarios. Also, facial expressions are affected
by user-to-user variability, resulting in individual differences in fa-
cial expressiveness and self-reported emotions. Further limitations
include a moving driving environment, occlusion, and changing

visibility conditions (e.g., sudden darkness in a tunnel). In contrast,
VEmotion captures the driving behavior of the user in addition
to facial expressions, which introduced performance increases of
38% in person-dependent (Leave-One-of-10-Road-Segments-Out
cross-validation) and 10% in person-independent cross-validation
schemes.

While our results show an improved classification performance
for VEmotion, we find that the driving behavior and the perceived
emotions are individual factors. Here, the resulting general model
results in poor classification performances. However, training the
model for each user individually yields a higher classification ac-
curacy. VEmotion has to learn person-dependent discriminatory
features from the contextual data to achieve acceptable accuracies.
Therefore, the emotions predicted by VEmotion improves if more
person-dependent information is available.

6.3 Enabling Empathic Vehicle-Applications
with VEmotion

VEmotion allows the implementation of several use cases, how-
ever, our work intends to make a sensory system contribution
of unobtrusively measuring emotions in the wild. VEmotion is
beneficial in providing direction into what enjoyable drives are,
and VEmotion’s predictions6 can inform infrastructure and road
planning policies. For instance, it might be meaningful to enforce
speed limits or narrow roads on some road segments to increase
the overall road safety based on VEmotion. For example, VEmo-
tion enables navigation functionality to invoke positive emotions.
This idea has been proposed but yet has to be implemented [4].
Unknown route segments can be labeled with the respectively mea-
sured emotions. Car navigation can then be extended by routing
after emotions. Other applications include the reflection of emo-
tions after a ride. For example, a post-driving tool can visualize
the perceived emotions for single road segments. Furthermore,
future empathic car interfaces can utilize VEmotion to modulate
driver emotions in real-time, for example, by playing pleasurable
music [57].

6.4 Ethical Considerations
We emphasize an ethical as well as transparent use of VEmotion
for application purposes and stress that emotions are intimate, per-
sonal, and vulnerable, where potential emotional insights can be
manipulated to impact behavior in the long term [3]. Until now,
many resources went into in-vehicle sensing which has resulted in
much debate about the need for limiting facial recognition technol-
ogy due to privacy and ethical considerations [3, 51]. The current
work objectively looks at the significance of facial recognition and
other data regarding what they might be telling us about the human
perceived emotion. To the best of our knowledge, this is the first
study where volunteers have allowed the recording of facial ex-
pressions together with contextual vehicular data in the wild. Our
analysis reveals that contextual data obtained from a vehicle-CAN
or smartphone is more efficient than actual facial recognition tech-
nologies. This has implications on several fronts: (1) We have been
collecting vehicle data for the last 15 years, yet a potential exploit
of this data might enable to backwards-infer human’s perceived
6given a more broaden data acquisition
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Figure 5: Classification performance for fine-tuning theRandomForest classifierwith the first x minutes of participants riding
data in a Leave-One-Participant-Out training scheme, in which the performance is computed on the available rest-duration
of the ride data. The mean performance across all participants, as well as the 95% confidence intervals, are shown. Overall
the performance of the classifier increases in all metrics (accuracy, F1 score, precision and recall) knowing the first 5 minutes
of personal driving data. Subsequently, the metrics converge, but precision is steadily increasing. We stopped computing the
performance after 20 minutes due to little held out remaining driving test data.

feeling on this road given the features presented are available in the
data. (2) Environmental contextual data offers a potentially more
privacy-preserving and discomfort-reducing alternative to measure
emotions in the wild. The connection between affect and emotions
has always been emphasized. However, many other data variables
can infer emotions without the need for recording affective or physi-
ological variables. Our current work broadens the debate as to what
type of data should be accessible by whom and for what purposes.

6.5 Limitations and Future Work
The robustness of our approach relies heavily on the quality of
contextual input sensors. Thus, reliable in-vehicle emotion classifi-
cation becomes less reliable as more features drop out. For example,
facial expressions require a particular “expressiveness” of the driver
to detect the emotion. Another example includes the dropout of
contextual driving data, such as GPS connectivity, when driving
through a tunnel. We also do not gain introspective insights on the
on-goings of the driver’s mind and instead describe the driver’s
perceived emotions via eight primary states; this abstracts a sig-
nificant part in the much broader assessments of the multitude of
felt psychological on-goings of the driver. To further reflect the
relationship between emotional contextual triggers and emotional
states, we will expand our work to include outside-view-camera
input. Expressions via ecstatic hand gestures indicating angry af-
fective states could not be found in the video stream but may also
provide a direction for future camera-based affect features. Future
work might also extend the outside-view of VEmotion by looking
at other car’s behavior through the use of more privacy concerning
frontal video stream input. A more extensive database of rides with
a wider variety and distinction of emotions and more extended per-
sonal driving history enables longitudinal studies. Here, we strongly
stress acknowledging the context of the driver and surroundings
besides the emotion prediction, which should be represented in the
decision space of empathic car interfaces and data basis for emo-
tion recognition engines. Finally, our results show that an 8-minute

calibration procedure on unseen drivers is sufficient to achieve
a satisfying accuracy of over 68%, while the beep sound was not
perceived as annoying by the participant. However, different un-
obtrusive strategies for a suitable calibration of VEmotion, such as
incident-based sampling, will be evaluated in future work, having
the caveat of not accessing a high-resolution emotion assessment
on all road types.

7 CONCLUSION
This paper presents VEmotion, a system that derives user emotions
by assessing driving information. We found that context variables
can be captured in real-time using GPS at low cost, optionally ac-
companied by a cameramonitoring the driver. This finding is unique
as comparatively few studies are performed ‘in-the-wild’ and with
the use of personal computing devices as opposed to the bespoke
in-vehicle sensors. We gain many insights by having the ability
to record a much more fine-grained picture of the driver and its
surroundings and potential influences on emotion with VEmotion
in a noisy real-world environment. This provides automotive user
interface designers with an additional tool to design unobtrusive
empathic car interfaces deployed in real-world scenarios. Here, we
are confident that VEmotion advances the field of emotion-aware
car interfaces. To encourage research in this area, we publish the
source code of VEmotion and the data set for further analysis by
the research community7.
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APPENDIX
A BASELINE FACIAL EXPRESSION ANALYSIS
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Figure 6: Facial Expression analysis using a) publicly available facial expression analysis tool EmoPy b) cloud-service AWS
Facial Recognition service. For AWS, we assigned ’calm’ recognition labels to ’neutral’. Both classification system offer little
predictive power in explaining perceived emotions on the ride. The accuracy overall of a) is 0.0076 and b) 0.5445.
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