
Your Skin Resists: Exploring Electrodermal Activity as
Workload Indicator during Manual Assembly

Thomas Kosch1, Jakob Karolus1, Havy Ha2, Albrecht Schmidt1

LMU Munich, Munich, Germany, 1{firstname.lastname}@ifi.lmu.de, 2havy.ha@campus.lmu.de

ABSTRACT
Production lines are increasingly defined by smaller lot sizes
that require workers to memorize frequent changes of assem-
bly instructions. Previous research reports positive results of
using assistive systems that compensate increments of work-
load by providing "just-in-time" instructions. However, there
is rare evidence to which degree workload is alleviated by
using assistive technologies. This work explores the potential
of electrodermal activity (EDA) as a real-time monitoring tool
for workload that is placed by two different assistive systems
during manual assembly. In a preliminary user study (N=18),
participants were induced with temporal and mental workload
while conducting an assembly task with two different assis-
tive systems: paper instructions and in-situ projections. Our
preliminary findings indicate that EDA measures and working
performance correlate to workload levels when using both
assembly systems. Based on our results, we discuss future
research in the area of smart factories that implicitly evaluate
workload through EDA in real-time to adapt assistive tech-
nologies at workplaces individually during manual assembly.
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INTRODUCTION AND BACKGROUND
Manual assembly at production lines is a cognitively demand-
ing and stressful task. It does not rely on pure rote learning
anymore as the manufacturing of individual end products has
increased and product lot sizes have decreased [12]. This re-
quires workers to memorize and adapt assembly instructions
on-demand which potentially increases error rates and slows
down the workers’ performance. Switching between different
instructions increases the workload as new assembly proce-
dures need to be employed [16]. Assistive systems have been
integrated at workplaces to cope with this increase in work-
load. For example, in-situ projections have been enrolled to
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Figure 1. Participant assembling with in-situ projections. A wristband
evaluates the worker’s EDA magnitude that serves as an indicator for
the current workload.

augment workplaces with contextual assistance [19]. Studies
have shown a decrease in workload on self-rated scales [4,
9, 11] and objective measures [3, 10] that facilitate several
physiological sensing devices when using in-situ projections.
For example, electrodermal activity (EDA) has established
itself as such a physiological measure to sense workload in
real-time.

EDA describes the electrical conductance of skin that increases
with physiological arousal and higher activity of sweat glands.
Thus, EDA is often associated with task engagement [6],
stress [17], and cognitive demand [15]. In contrary to pre-
vious physiological sensing modalities, EDA enables to sense
workload using a non-intrusive wristband. Self-rated metrics,
that have been used in past research to evaluate workload
placed by assistive systems, do not provide real-time insights
into cognitive states and are prone to subjective perception. In
this work, we showcase how EDA provides an assessment of
two different assembly instruction systems in terms of stress,
cognitive workload, and working performance. We conducted
an exploratory user study in which participants perform an
assembly task using paper instructions and in-situ projections
while being artificially induced with temporal and mental
workload. We investigate differences in workload between
paper instructions and in-situ projections while recording the
assembly performance. Furthermore, we record EDA using
a non-intrusive wristband (see Figure 1). We replicate, that
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(a) (b) (c)
Figure 2. Used assembly instruction systems. (a): Printed paper instruction. (b): In-situ projection highlighting an item bin. (c): In-situ projection
indicating where to put the Lego Duplo brick.

in-situ projections alleviate perceived temporal and mental
workload compared to paper instructions according to assem-
bly performance and subjectively perceived workload. We find,
that our EDA measures converge with subjectively perceived
workload and assess EDA as a potential real-time measure
for workload during manual assembly. We discuss how future
assistive systems can adaptively change instruction modalities
to prevent frustration or boredom through cognitive overload
and underload.

EXPLORATORY STUDY
We conducted a preliminary study to investigate differences in
EDA, assembly performance, and subjective workload during
assembly with paper instructions or in-situ projections. EDA
is known to correlate positively when workload is utilized [17].

Assembly Instruction Systems
We use paper instructions and in-situ projections as assistive
systems that have been presented by related work [5]. Par-
ticipants were asked to assemble Lego Duplo bricks through-
out the study. Lego Duplo has been frequently used in past
research since the task complexity can be changed without
changing the task itself [2, 5, 10]. We used six bricks with
a 2× 2 size placed in small item bins and two bricks with a
2× 4 size placed in large item bins resulting in eight bricks of
a different color. The overall number of assembly steps per
condition comprised 24 working steps.

Paper Instructions
Paper instructions were printed single-sided on an A4 sheet
of paper to ensure that the position and size of every step
were the same. Instructions were put together using a folder
and positioned to the preferred side of the user. The folded
assembly instruction remained the same position during the
study. The upper left corner shows the brick that has to be
selected for the current step. A red arrow shows the final
position of the brick (see Figure 2a).

In-Situ Projections
We use a projector mounted above the work table to display
assembly steps on the working carrier. A Kinect v2 validates
each item selection (see Figure 2b) as well as each assembly
step (see Figure 2c) and proceeds to the next working step
upon successful validation. This comprises the evaluation of
correct item selection and assembly steps. If the user makes

an error the system waits with the current working step until it
is done correctly.

Methodology and Procedure
We employ a within-subject design where we used the in-
struction systems, a time limit for temporal workload, and an
addition task for cognitive workload as independent variables
while participants simultaneously assemble a Lego Duplo con-
struction. All conditions were counterbalanced across partic-
ipants. We collect EDA throughout the study and label the
data with the beginning and end of each condition. EDA is
recorded using an Empatica E41.

Participants signed a consent form and provided their demo-
graphic data after we explained the course of research. We
placed the Empatica E4 wristband on the non-dominant hand
and asked the participants to keep this hand still to avoid noisy
EDA measurements. After a five-minute resting phase, we
started the recording process. First, we recorded EDA for
one minute to obtain a baseline measurement. Afterwards,
participants started the assembly task with in-situ projections
or paper instructions with the respective secondary task. We
describe the baseline measure and secondary task that induces
stress and cognitive workload in the following.

Baseline
Participants were asked to relax for one minute while EDA
was recorded. The recordings serve as a baseline measure for
later analysis.

Plain Assembly
Participants were solely assembling Lego Duplo bricks using
either (a) in-situ projections or (b) paper instructions.

Time Limit
In addition to the plain assembly, a time limit of one minute
and thirty seconds was presented on a secondary screen next
to the workspace. This intends to induce stress as participants
were asked to complete their assembly task within the given
time limit [13].

Addition Task
Parallel to the plain assembly, participants had to solve a math
addition task. This is expected to strain working memory,
1www.empatica.com/research/e4 - last access 2019-05-02
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Figure 3. EDA Differences (EDAD) for each condition relative to the
baseline. In-situ projections show a lower EDAD for an absent task diffi-
culty or additional time limit. However, paper instructions show a lower
EDAD when an addition task or a combination of addition tasks and
time limits are introduced. The error bars depict the standard error.

which is a frequently used cognitive system regarding informa-
tion retrieval and manipulation within short-term memory [15,
18]. The sum of two numbers, ranging between 0−9, had to
be calculated. The experimenter verbally stated two random
numbers after each working step. The participant had to cal-
culate the sum and provide the solution orally before starting
with the next working step.

Time Limit & Addition Task
A time limit and the addition task were employed at the same
time.

Measures
Besides of EDA, we count the number of item selection er-
rors and assembly errors. An item selection error is counted
when participants pick a wrong brick. An assembly error was
counted when the brick was not put on the final spot. We col-
lect the subjective perception of workload using NASA-TLX
questionnaires [7] after each condition.

Preliminary Results
We recruited 18 participants (aged between 22 - 29, 6 female)
through university mailing lists. 16 participants were right-
handed. All participants had normal or corrected-to-normal
vision. Participants were compensated with ten Euro for their
participation. We calculate the mean value of the EDA mea-
surements for each condition across all participants to result
with a single value per condition and participant. Afterward,
we calculate the EDA Difference (EDAD) between the base-
line measures and respective condition measures per partic-
ipant [14]. By this, we normalize individual differences in
EDA measures.

We submitted the EDAD measures to a Bayesian Repeated
Measures ANOVA [8] which includes the assembly instruc-
tion modality (i.e., paper instruction and in-situ projection),
cognitive workload (i.e., addition task), and temporal demand
(i.e., time limit) as independent variables to quantify differ-
ences in objectively perceived workload. By analyzing the

Table 1. Mean number of item selection errors for each condition. The
lowest values are bold.

Task Difficulty Paper Projection

Plain Assembly 0.167 0.111
Time Limit 0.278 0.278
Addition Task 0.556 0.056
Time Limit & Addition Task 0.111 0.000

Table 2. Mean number of assembly errors for each condition. The lowest
values are bold.

Task Difficulty Paper Projection

Plain Assembly 0.167 0.333
Time Limit 0.167 0.333
Addition Task 0.667 0.500
Time Limit & Addition Task 0.167 0.222

EDAD measures, we found a Bayes Factor (BF10) of 13.08
when manipulating cognitive resources by adding an addition
task to the assembly. This means that a difference in EDAD
measures is 13.08 times more likely to occur when adding a
cognitive task during assembly, regardless of the instruction
system. Combining the assembly instruction system and a
cognitively demanding task resulted in a Bayes Factor of 2.09.
Combining temporal demand and cognitive workload for both
assembly instruction systems yielded a Bayes Factor of 2.51.
The Bayes Factor of the remaining variables indicated a low
probability of differentiating from each other (BF10 < 1 and
BF10 >−1).

Furthermore, we submitted the raw NASA-TLX scores to a
Bayesian Repeated Measures ANOVA. Again, we found a
Bayes Factor (BF10) of 8.60 when adding an addition task
during assembly. Combining the assembly instruction systems
and the addition task resulted in a Bayes Factor of 7.73 while
a combination of temporal demand and cognitive workload
resulted in a Bayes Factor of 9.81, regardless of the used as-
sembly instruction system. The Bayes Factor of the remaining
variables indicated a low probability of differentiating from
each other (BF10 < 1 and BF10 >−1).

We descriptively analyze our data to find differences between
the single conditions. Paper instructions without task elicited
a larger EDAD (M = 1.276,SD = 0.462) compared to in-
situ projections (M = 0.360,SD = 0.402). Paper instruc-
tions also showed a larger EDAD when adding a time limit
(M = 0.7,SD = 0.345) compared to in-situ projections (M =
0.4,SD= 0.454). However, in-situ projections showed a larger
EDAD during addition tasks (M = 3.448,SD = 0.46) com-
pared to paper instructions, (M = 1.635,SD = 0.339). Finally,
we find a larger EDAD for in-situ projections when combining
the time limit and addition task (M = 3.888,SD = 0.497) com-
pared to paper instructions (M = 3.49,SD = 0.46). Figure 3
visualizes the mean EDADs for each condition. In average,
participants made (M = 0.285,SD = 0.77) errors when using
paper instructions and (M = 0.229,SD = 0.851) errors when
using in-situ projections. Table 1 shows the average number
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Figure 4. Raw NASA-TLX scores for each condition. The error bars
indicate the standard error.

of item selection errors and Table 2 shows the average number
of assembly errors. The raw NASA-TLX scores reveal, that
in-situ projections cause less subjective workload than paper
instructions during all tasks (see Figure 4).

DISCUSSION
We discuss the implications from the results of our pilot study
in the following.

EDAD and Assembly Performance
We find that in-situ projections without additional tasks im-
prove the assembly performance regarding the number of er-
rors and subjectively perceived workload compared to paper
instructions. Thus, we can confirm the outcomes of previ-
ous work [5]. Furthermore, we find profound differences in
EDADs between paper instructions and in-situ instructions.
While in-situ projections provided lower EDADs during plain
assembly and conditions including a time limit, we find larger
EDADs during conditions that include an addition task. How-
ever, the subjective perception of workload was still higher
for paper instructions although the EDADs for in-situ projec-
tion were higher. Also, the overall number of item selection
and assembly errors for the addition task was lower in-situ
projections. We believe that this effect is due to task engage-
ment which is known to correlate positively with EDA [6, 15].
Such real-time insight into EDADs and assembly performance
could serve as a context-aware detector for boredom, task en-
gagement, or frustration. Another reason could be that flipping
the current page during paper instructions provided a short
mental break from the addition task, thus resulting in lower
EDADs during assembly with paper instructions.

Using the Right Instruction for the Right Job
Real-time adaptation of assembly instructions can be used to
elicit desired physical and mental states. If a high number of
assembly errors in combination with high EDADs during the
use of in-situ projections are measured, an adaptive system
advises the worker to take a break or recommend physical
paper instructions as an alternative. This analysis can be used
for reinforcement learning, where changes in the environment
are registered (e.g., worker switched to paper instructions

which result in fewer errors) to tailor assembly instructions to
the individual level of workload.

Limitations and Future Work
Participants were instructed to use their dominant hand for
the whole assembly procedure to avoid noisy EDA measures
from their non-dominant hand. In future work, we will eval-
uate a multimodal set of non-intrusive stationary sensors for
workload detection [1] including our mobile approach. Be-
fore this, we will conduct qualitative inquiries with workers
to gather requirements for real-time workload management
during manual assembly.

CONCLUSION
In this work, we explore Electrodermal Activity (EDA) as an
objective measure for workload during manual assembly tasks
with two different instruction systems. Through the incorpora-
tion of time limits and addition tasks in parallel, we evaluate to
which degree workload is perceived by paper instructions and
in-situ projections. We find that an evaluation of item selection
and assembly errors in combination with EDA resembles an
alternative for robust workload detection. We believe that a
combination of environmental and physiological data can be
used in the future to design adaptive workload-aware assembly
instruction systems at workplaces that reduce boredom and
frustration.
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